Autor Wątek: MESSENGER  (Przeczytany 51142 razy)

0 użytkowników i 1 Gość przegląda ten wątek.

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #390 dnia: Marzec 09, 2016, 09:10 »
Wiadomo już od czego zależy ciemna powierzchnia Merkurego

Iron-rich minerals limit the amount of sunlight reflected by the moon, but Mercury is mostly without iron. Newly analyzed spectrometer data from NASA's Messenger probe instead reveals a high concentration of carbon on Mercury's surface.

When researchers at Johns Hopkins University and the Carnegie Institution for Science compared a map of carbon-rich deposits with a map of Mercury's reflectivity, they found a strong correlation between carbon and darkness.

http://www.spacedaily.com/reports/Scientists_explain_why_Mercurys_surface_is_so_dark_999.html
http://www.pulskosmosu.pl/2016/03/07/rozwiazanie-zagadki-ciemnej-powierzchni-merkurego/

EDIT:
http://www.spacedaily.com/reports/Mercurys_mysterious_darkness_revealed_999.html
« Ostatnia zmiana: Marzec 10, 2016, 09:00 wysłana przez Orionid »

Offline ekoplaneta

  • Weteran
  • *****
  • Wiadomości: 4502
  • One planet Once chance
Odp: MESSENGER
« Odpowiedź #391 dnia: Maj 09, 2016, 23:03 »

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #392 dnia: Maj 25, 2016, 13:09 »
I trochę szczegółowych nt cyfrowego modelu wysokościowego:

Nowy model odkrywa przed nami różnorodne cechy topografii planety widoczne na animacji powyżej. Pośród nich znajdują się najwyższy i najniższy obiekt na powierzchni planety. Najwyższy punkt na powierzchni Merkurego sięga na wysokość 4.48 km nad średnią wysokość planety i znajduje się nieznacznie na południe od równika. Najniższy natomiast punkt sięga na głębokość 5.38 km poniżej średniej wysokości i znajduje się na dnie basenu Rachmaninowa – ciekawego, podwójnego krateru uderzeniowego, w którym mogą znajdować się najświeższe osady wulkaniczne na tej planecie.

Żródło: http://www.pulskosmosu.pl/2016/05/10/pierwszy-globalny-model-topografii-merkurego/

http://www.nasa.gov/feature/first-global-topographic-model-of-mercury
« Ostatnia zmiana: Maj 25, 2016, 13:24 wysłana przez Orionid »

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #393 dnia: Wrzesień 27, 2016, 08:17 »
Merkury aktywny tektonicznie

Progi tektoniczne to formacje tektoniczne przypominające klify. Większe, starsze progi widoczne były już na zdjęciach wykonanych zarówno przez sondę MESSENGER jak i sondę Mariner 10 i są dowodem na globalne kurczenie się Merkurego spowodowane ochładzaniem się wnętrza planety, które bezpośrednio prowadzi do  kurczenia się skorupy.

„Młody wiek małych progów oznacza, że Merkury dołącza do Ziemi w spisie aktywnych tektonicznie planet Układu Słonecznego, bowiem niewielkie progi najprawdopodobniej powstają także teraz,” mówi Watters z Center for Earth and Planetary Studies w National Air and Space Museum.

Źródło: http://www.pulskosmosu.pl/2016/09/27/aktywnosc-tektoniczna-na-merkurym/
http://phys.org/news/2016-09-mercury-tectonically.html
https://www.nasa.gov/image-feature/tectonically-active-planet-mercury
« Ostatnia zmiana: Październik 21, 2016, 22:36 wysłana przez Orionid »

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #394 dnia: Listopad 19, 2016, 17:40 »
NASA znalazła na Merkurym wielką dolinę
19.11.2016

Naukowcy użyli obrazów uzyskanych przez sondę MESSENGER, aby opracować mapę topograficzną powierzchni Merkurego. Dzięki temu odkryto istnienie szerokiej doliny na powierzchni planety – podała amerykańska agencja kosmiczna.

Nowo poznana dolina na Merkurym ma ponad 1000 km długości, 400 km szerokości i 3 km głębokości. Ciągnie się do krateru Rembrandt, będącego jednym z największych i najmłodszych niecek uderzeniowych na powierzchni planety.
 
Merkuriańska „wielka dolina” jest mniejsza od marsjańskiej Valles Marineris, ale większa od Wielkiego Kanionu w USA oraz głębsza od Wielkich Rowów Afrykańskich. W przeciwieństwie do tej ostatniej struktury, nie została utworzona w wyniku odsuwania się płyt tektonicznych, jest natomiast efektem globalnej kontrakcji podczas kurczenia się pojedynczej płyty tektonicznej.
 
Naukowcy przypuszczają, że najbardziej prawdopodobnym wytłumaczeniem powstania „wielkiej doliny” jest deformacja najbardziej zewnętrznej warstwy skorupy planety jako reakcji na globalne kurczenie się. Ochładzanie się wnętrza Merkurego spowodowało, że pojedyncza zewnętrzna płyta planety ulega deformacjom. Na obszarze „wielkiej doliny” skały ze skorupy są wypychane ku górze, a dno wnoszącego się obszaru opadło na dół.
 
„Znamy przypadki takich procesów geologicznych na Ziemi, zarówno w przypadku płyt oceanicznych, jak i kontynentalnych, ale tutaj mamy do czynienia z pierwszym przypadkiem takiego procesu dostrzeżonego na Merkurym” - skomentował Tom Watters ze Smithsonian National Air and Space Museum, główny autor publikacji, która ukazała się w „Geophysical Research Letters”. (PAP)

http://naukawpolsce.pap.pl/aktualnosci/news,412054,nasa-znalazla-na-merkurym-wielka-doline.html
https://www.eurekalert.org/pub_releases/2016-11/uom-gv111716.php
https://www.sciencedaily.com/releases/2016/11/161116104013.htm

Offline ekoplaneta

  • Weteran
  • *****
  • Wiadomości: 4502
  • One planet Once chance
Odp: MESSENGER
« Odpowiedź #395 dnia: Listopad 19, 2016, 18:21 »
Czy to jest dolina? Chyba bardziej kotlina  :)

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #396 dnia: Wrzesień 19, 2017, 21:42 »
Nowe badania wskazują , że powierzchnia Merkurego zawiera  dużo więcej lodu, niż wcześniej sądzono.
W zaciemnionych dużych kraterach w okolicach północnego bieguna  planety lód  utrzymuje się  stale.

Ale okazuje się , że depozyty lodu  w mniejszej skali  są rozproszone wokół bieguna północnego Merkurego, zarówno wewnątrz kraterów, jak i w zacienionych obszarach pomiędzy kraterami. W sposób znaczący zwiększa to  poziom zapasu lodu na powierzchni Merkurego.

New research suggests Mercury’s poles are icier than scientists thought
September 19, 2017  Kevin Stacey


Eternal shadows
Brown researchers have found new evidence of ice sheets in permanently shadowed craters near the north pole of Mercury. Head lab / Brown University 


A Brown University study identifies three large surface ice deposits near Mercury’s north pole, and suggests there could be many additional small-scale deposits that would dramatically increase the planet’s surface ice inventory.
PROVIDENCE, R.I. [Brown University] — The scorching hot surface of Mercury seems like an unlikely place to find ice, but research over the past three decades has suggested that water is frozen on the first rock from the sun, hidden away on crater floors that are permanently shadowed from the sun’s blistering rays.  Now, a new study led by Brown University researchers suggests that there could be much more ice on Mercury’s surface than previously thought.

The study, published in Geophysical Research Letters, adds three new members to the list of craters near Mercury’s north pole that appear to harbor large surface ice deposits. But in addition to those large deposits, the research also shows evidence that smaller-scale deposits scattered around Mercury’s north pole, both inside craters and in shadowed terrain between craters. Those deposits may be small, but they could add up to a lot more previously unaccounted-for ice.

“The assumption has been that surface ice on Mercury exists predominantly in large craters, but we show evidence for these smaller-scale deposits as well,” said Ariel Deutsch, the study’s lead author and a Ph.D. candidate at Brown. “Adding these small-scale deposits to the large deposits within craters adds significantly to the surface ice inventory on Mercury.”

The idea that Mercury might have frozen water emerged in the 1990s, when Earth-based radar telescopes detected highly reflective regions inside several craters near Mercury’s poles. The planet’s axis doesn’t have much tilt, so its poles get little direct sunlight, and the floors of some craters get no direct sunlight at all. Without an atmosphere to hold in any heat from surrounding surfaces, temperatures in those eternal shadows have been calculated to be low enough for water ice to be stable. That raised the possibility these “radar-bright” regions could be ice.

That idea got a boost after NASA’s MESSENGER probe entered Mercury’s orbit in 2011. The spacecraft detected neutron signals from the planet’s north pole that were consistent with water ice. 

For this new study, Deutsch worked with Gregory Neumann from NASA’s Goddard Space Flight Center to take a deep dive into the data returned from MESSENGER. They looked specifically at readings from the spacecraft’s laser altimeter. The device is mostly used to map elevation, but it can also be used to track surface reflectance.

Neumann, an instrument specialist for the MESSENGER mission, helped to calibrate the altimeter’s reflectance signal, which can vary depending upon whether the measurement is taken from directly overhead or at an oblique angle (known as “off-nadir”).  That calibration enabled the researchers to detect high reflectance deposits consistent with surface ice in three large craters for which only off-nadir detections were available.

The addition of those craters to Mercury’s ice inventory is significant. Deutsch estimates the total area of the three sheets to be about 3,400 square kilometers—slightly larger than the state of Rhode Island.

But another major aspect of the work is that the researchers also looked at reflectance data for the terrain surrounding those three large craters. That terrain isn’t as bright as the ice sheets inside the craters, but it’s significantly brighter than the average Mercury surface.

“We suggest that this enhanced reflectance signature is driven by small-scale patches of ice that are spread throughout this terrain,” Deutsch said. “Most of these patches are too small to resolve individually with the altimeter instrument, but collectively they contribute to the overall enhanced reflectance.”

To seek further evidence that such smaller-scale deposits exist, the researchers looked though the altimeter data in search of patches that were smaller than the big crater-based deposits, but still large enough to resolve with the altimeter. They found four, each with diameters of less than about 5 kilometers.

“These four were just the ones we could resolve with the MESSENGER instruments,” Deutsch said. “We think there are probably many, many more of these, ranging in sizes from a kilometer down to a few centimeters.”

Knowing that these small-scale deposits exist, and that they’re likely the source of the slightly brighter surface outside craters, could dramatically increase the ice inventory on Mercury.  Similar small-scale ice deposits are thought to exist on the poles of the Moon. Research models have suggested that accounting for these small-scale deposits roughly doubles the amount of lunar real estate that could harbor ice. The same could be true on Mercury, the researchers say.

How this polar ice may have found its way to Mercury in the first place remains an open question, Deutsch says. The leading hypothesis is that it was delivered by water-rich comet or asteroid impacts. Another idea is that hydrogen may have been implanted in the surface by solar wind, later combining with an oxygen source to form water.

Jim Head, Deutsch’s Ph.D. advisor and co-author of the research, said the work adds a new perspective on a critical question in planetary science.

“One of the major things we want to understand is how water and other volatiles are distributed through the inner solar system—including Earth, the Moon and our planetary neighbors,” Head said. “This study opens our eyes to new places to look for evidence of water, and suggests there’s a whole lot more of it on Mercury than we thought.”

The study was supported by NASA through the Harriet G. Jenkins Graduate Fellowship (NNX16AT19H) and the Solar System Exploration Research Virtual Institute.

https://news.brown.edu/articles/2017/09/mercury
http://www.pulskosmosu.pl/2017/09/20/wiecej-lodu-na-biegunach-merkurego/
« Ostatnia zmiana: Wrzesień 20, 2017, 14:53 wysłana przez Orionid »

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #397 dnia: Wrzesień 29, 2017, 23:38 »
Small Collisions Make Big Impact on Mercury’s Thin Atmosphere
Sept. 29, 2017

(...) Earlier findings based on data from MESSENGER's Ultraviolet and Visible Spectrometer revealed the effect of meteoroid impacts on Mercury's surface throughout the planet's day. The presence of magnesium and calcium in the exosphere is higher at Mercury's dawn—indicating that meteoroid impacts are more frequent on whatever part of the planet is experiencing dawn at a given time.

This dawn-dusk asymmetry is created by a combination of Mercury's long day, in comparison to its year, and the fact that many meteroids in the solar system travel around the Sun in the direction opposite the planets. Because Mercury rotates so slowly—once every 58 Earth days, compared to a Mercury year, a complete trip around the Sun, lasting only 88 Earth days—the part of the planet at dawn spends a disproportionately long time in the path of one of the solar system's primary populations of micrometeoroids. This population, called retrograde meteoroids, orbits the Sun in the direction opposite the planets and comprises pieces from disintegrated long-period comets. These retrograde meteroids are traveling against the flow of planetary traffic in our solar system, so their collisions with planets—Mercury, in this case—hit much harder than if they were traveling in the same direction.

These harder collisions helped the team further key in on the source of the micrometeoroids pummeling Mercury's surface. Meteroids that originally came from asteroids wouldn't be moving fast enough to create the observed impacts. Only meteoroids created from two certain types of comets—Jupiter-family and Halley-type—had the speed necessary to match the obseravations. (...)

https://www.nasa.gov/feature/goddard/2017/small-collisions-make-big-impact-on-mercury-s-thin-atmosphere
« Ostatnia zmiana: Wrzesień 30, 2017, 17:16 wysłana przez Orionid »

Online Orionid

  • Weteran
  • *****
  • Wiadomości: 4984
  • Very easy - Harrison Schmitt
Odp: MESSENGER
« Odpowiedź #398 dnia: Październik 15, 2017, 22:51 »
Geologiczna mapa Merkurego

GEOLOGY OF THE VICTORIA QUADRANGLE ON MERCURY
09/10/2017


The image is an excerpt from a detailed geological map that is the first complete geological survey of this region made using data from NASA’s Messenger mission, which orbited Mercury from 2011 to 2015. It covers a section in the planet’s northern hemisphere known to planetary geologists as the Victoria Quadrangle, and is centred on about 45ºW / 45ºN.

http://m.esa.int/spaceinimages/Images/2017/10/Geology_of_the_Victoria_Quadrangle_on_Mercury

Offline kanarkusmaximus

  • Administrator
  • *****
  • Wiadomości: 15756
  • Ja z tym nie mam nic wspólnego!
    • Kosmonauta.net
Odp: MESSENGER
« Odpowiedź #399 dnia: Listopad 15, 2017, 16:12 »
A tak a propos - czy jest jakiś zasób publikacji i raportów z tej misji?