Autor Wątek: Astrofizyka - Badania różne (zbiorczo)  (Przeczytany 204023 razy)

0 użytkowników i 1 Gość przegląda ten wątek.

Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #420 dnia: Sierpień 04, 2023, 14:10 »
To się nazywa ciasny układ podwójny. Można go schować wewnątrz Słońca.



Przestrzeń kosmiczna skrywa przed nami jeszcze wiele tajemnic i zaskoczeń. Przekonali się o tym astronomowie, którzy odkryli właśnie rekordowy układ dwóch gwiazd, które okrążają wspólny środek masy po tak ciasnych orbitach, że cały ten układ zmieściłby się wewnątrz… Słońca.

Rzeczony układ skatalogowany pod numerem ZTF J2020+5033 znajduje się zaledwie 457 lat świetlnych stąd i składa się z brązowego karła o dużej masie i czerwonego karła o małej masie, które krążą wokół siebie, okrążając się nawzajem w czasie zaledwie 1,9 godziny. To najbliższa orbita, na której dotychczas znaleziono brązowego karła. Odległość między oboma obiektami jest mniejsza niż połowa promienia Słońca.

W ciasnych układach podwójnych z innymi małymi gwiazdami jak dotąd nie odkrywano zbyt wiele brązowych karłów. Według zespołu kierowanego przez astrofizyka Kareema El-Badry’ego z Harvard-Smithsonian Center for Astrophysics ZTF J2020+5033 może dostarczyć nam wyjaśnienia tego fenomenu.

Technicznie rzecz biorąc, brązowe karły nie mieszczą się w definicji gwiazd. Zamiast tego znajdują się w szarej strefie między małymi gwiazdami a masywnymi planetami. Przy masie od 13 do 80 mas Jowisza, są wystarczająco masywne, aby w ich jądrze dochodziło do syntezy deuteru, ale niewystarczająco masywne, aby dochodziło tam do syntezy wodoru, która napędza pełnoprawne gwiazdy.

Ponieważ są raczej małe i niezbyt jasne, trudno je dostrzec. Wiemy o około 5000 brązowych karłach w Drodze Mlecznej, a większość z nich jest całkowicie samotna i nie należy do żadnego układu podwójnego czy asocjacji gwiazd. Tylko około 1 procent gwiazd podobnych do Słońca i gwiazd o mniejszej masie znajduje się w układach podwójnych z brązowymi karłami w obrębie kilku jednostek astronomicznych.

Mimo to, astronomowie poszukują takich układów podwójnych. Brązowe karły w układzie podwójnym z gwiazdą umożliwiają nam pomiary ich parametrów, a tym samym lepsze zrozumienie procesu ich powstawania i ewolucji.

El-Badry i jego koledzy szukali układów podwójnych o małej masie, które mogą obejmować brązowego karła, używając teleskopu Zwicky Transient Facility. Po odkryciu układu ZTF J2020+5033 naukowcy przyjrzeli mu się dokładniej za pomocą innych instrumentów, w tym teleskopu Gaia. Dzięki temu udało się precyzyjnie ustalić położenie i rozmiary układu.

Czerwony karzeł układu jest również stosunkowo mały – zaledwie 17,6 procent promienia i 13,4 procent masy Słońca.

Z drugiej strony brązowy karzeł znajduje się dokładnie na granicy górnej granicy masy dla tych enigmatycznych obiektów: ma mniej więcej promień Jowisza, ale ma masę 80,1 razy większą od niego.

Inne cechy układu wskazują, że oba obiekty są również dość stare, co rodzi pytania o to, jak znalazły się w obecnym położeniu. El-Badry i jego współpracownicy uważają, że oba obiekty były kiedyś znacznie większe, niż są aktualnie, co sugeruje, że kiedyś znajdowały się co najmniej 5 razy dalej od siebie.



Kiedy materia wywiewana jest z gwiazdy, jest ona spowalniana przez jej pole magnetyczne, zanim ostatecznie ucieknie. Tak jak obracający się łyżwiarz spowalnia, wyciągając ramiona, tak rozkład masy spowalnia obrót gwiazdy, co w przypadku układów podwójnych zacieśnia orbitę. Biorąc pod uwagę ciasną orbitę w tym układzie podwójnym, takie „hamowanie magnetyczne” wydaje się być skutecznym procesem, nawet w przypadku gwiazd o małej masie i brązowych karłów.

Oznacza to także, że w przyszłości orbita ZTF J2020+5033 powinna nadal się kurczyć. Chociaż jest mniejszy i mniej masywny niż czerwony karzeł, brązowy karzeł ma nieco większą grawitację powierzchniową; to z kolei oznacza, że brązowy karzeł zacznie kraść materię z czerwonego karła, gdy zaczną się do siebie zbliżać.

Jeśli hamowanie magnetyczne odgrywa rolę w zacieśnianiu orbity, ten transfer masy powinien rozpocząć się w ciągu najbliższych kilkudziesięciu milionów lat. Odkrycie układu tak blisko nas, sugeruje, że te ciasne, niskomasywne układy podwójne są stosunkowo powszechne. Mogliśmy po prostu nie znaleźć wielu, ponieważ są zbyt ciemne. Możliwe, że teleskopy nowej generacji będą nam w stanie wkrótce pokazać ich znacznie więcej.


Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #421 dnia: Październik 12, 2023, 20:40 »
Początki formowania się planet ujawnione przez obserwacje ALMA.

Na ilustracji: Zdjęcie dysku protoplanetarnego DG Tau na długości fali 1,3 mm. Gładki wygląd, bez struktur pierścieniowych, wskazuje na fazę krótko poprzedzającą formowanie się planety. Źródło: ALMA (ESO/NAOJ/NRAO), S. Ohashi i inni.



Międzynarodowy zespół naukowców wykorzystał moc ALMA aby naświetlić początki formowania się planet. Skupili się na badaniu protogwiazdy, która wykazywała gładki dysk protoplanetarny.

Według naukowców, planety powstają z pyłu i gazu międzygwiezdnego w dysku protoplanetarnym otaczającym protogwiazdę. Jednak początek tego procesu pozostaje tajemnicą. Choć wiele obserwowanych za pomocą ALMA dysków wykazuje struktury przypominające pierścienie, co sugeruje obecność planet, znalezienie czystego dysku pozbawionego takich sygnatur okazało się nieuchwytne.

Przełomowe odkrycie nastąpiło podczas obserwacji DG Taurus (DG Tau), młodej protogwiazdy. Wykorzystując ALMA, naukowcy dostrzegli jednolity, gładki dysk, który nie posiadał charakterystycznych pierścieni, często obserwowanych w starszych protogwiazdach. Ta obserwacja wskazuje na możliwość, że DG Tau znajduje się na progu formowania planet. Odszyfrowanie pochodzenia planet podobnych do Ziemi jest kluczowe dla naszego zrozumienia początków życia.

Badając dysk protoplanetarny na różnych długościach fal, zespół naukowców poszerzył swoje badania, aby uzyskać lepszy wgląd w rozmiar i rozkład pyłu. Odkrycia, które dokonali, w fascynujący sposób sugerują, że zewnętrzne części dysku mogą być potencjalnym punktem początkowym dla formowania się planet. To podważa wcześniejsze przekonanie, że głównym punktem początkowym jest wewnętrzny dysk. Warto zauważyć, że środkowa płaszczyzna dysku wykazywała wysoki stosunek pyłu do gazu, co sugeruje, że dysk jest gotowy do formowania planet w najbliższej przyszłości.

ALMA dotychczas była w stanie uchwycić szeroką gamę struktur dyskowych i ujawnić istnienie planet. Jednak aby odpowiedzieć na pytanie, jak dokładnie rozpoczyna się proces formowania planet, istotne jest obserwowanie gładkiego dysku pozbawionego oznak formowania się planet. Uważamy, że to badanie ma ogromne znaczenie, ponieważ pozwala nam poznać początkowe warunki tworzenia się planet – skomentował profesor Satoshi Ohashi z Narodowej Obserwatorium Astronomicznego Japonii (NAOJ).

Badania te zostały opublikowane 28 sierpnia 2023 roku w czasopiśmie The Astrophysical Journal.

https://www.almaobservatory.org/en/press-releases/dawn-of-planet-formation-unveiled-by-alma-observations/

https://iopscience.iop.org/article/10.3847/1538-4357/ace9b9

Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #422 dnia: Grudzień 14, 2023, 00:42 »
Odkrycie najbliższej "ultra-odartej" supernowej: SN 2021agco w UGC 3855.

Na zdjęciu: Górne panele: Obrazy wczesnej fazy wybuchu supernowej 2021agco obserwowane przez ATLAS i Teleskop Półmetrowy (HMT). Dolne panele: zdjęcia rezydualne z obrazem galaktyki macierzystej odjętym od danych obserwacyjnych. Źródło: arXiv (2023). DOI: 10.48550/arxiv.2310.04827


Astronomowie donoszą o odkryciu nowej supernowej w galaktyce UGC 3855. Została wykryta za pomocą Teleskopu Półmetrowego HMT w Obserwatorium Xingming w Chinach.

Supernowe to bardzo silne i jasne eksplozje gwiazd, które pomagają nam lepiej zrozumieć ewolucję gwiazd i galaktyk. Astronomowie dzielą supernowe na dwie duże grupy w oparciu o ich widma atomowe: supernowe typu I i typu II. W widmach tych typu I nie występuje wodór. Supernowe typu II zawsze wykazują natomiast linie widmowe wodoru.

Supernowe typu Ib to podklasa supernowych, które charakteryzują się tzw. odartą otoczką. Powstają, gdy masywna gwiazda pozbawiona zewnętrznej otoczki wodorowej zapada się pod wpływem własnej grawitacji. Jednak astronomowie wyróżnili jeszcze tak zwane supernowe z ultra-odartą otoczką (i oznaczają je jako USSNe), które wykazują cechy widmowe podobne do supernowych typu Ib/Ic, ale stosunkowo słabo świecą. W przypadku tych rzadkich supernowych otoczka ich progenitora (czyli gwiazdowego źródła supernowej) została w ekstremalnym stopniu zniszczona jeszcze przed eksplozją.

Zespół astronomów pod kierownictwem Shengyu Yana z Uniwersytetu Tsinghua w Pekinie donosi o odkryciu osobliwej USSNe typu Ib. Po raz pierwszy została ona zidentyfikowana za pomocą teleskopu HMT 5 grudnia 2021 r. i otrzymała oznaczenie SN 2021agco. Wykryto ją w odległości około 130 milionów lat świetlnych, w stosunkowo starej galaktyce spiralnej znanej jako UGC 3855. Znajdywała się w odległości około 15 600 lat świetlnych od centrum tej galaktyki. Supernowa musiała ewoluować bardzo szybko, osiągając szczytową jasność -16,06 mag w ciągu zaledwie 2,4 dnia od wybuchu. Badania wykazały, że masa wyrzutu SN 2021agco wynosiła około 0,26 masy Słońca, a energia kinetyczna supernowej została oszacowana została na 95,7 kwintyliona ergów. Naukowcy ocenili też, że progenitor SN 2021agco miał wcześniej otoczkę o promieniu około 78,4 promienia słonecznego i masę rzędu 0,1 masy Słońca. Według autorów publikacji wyniki te sugerują, że progenitor SN 2021agco doznał gwałtownej utraty masy, a większość jego zewnętrznej powłoki została usunięta jeszcze przed wybuchem. Na podstawie tych ustaleń sklasyfikowano SN 2021agco jako ultra-odartą supernową Ib. To obecnie najbliższy Ziemi obiekt tego podtypu.

Obserwacje ujawniły również pewne informacje dotyczące właściwości macierzystej galaktyki supernowej, UGC 3855. Astronomowie odkryli, że ma ona około 10,6 miliarda lat, masę około 2,6 miliarda mas Słońca i stosunkowo niskie tempo formowania się gwiazd, wynoszące 0,2 masy Słońca rocznie. Odkrycie zostało szczegółowo opisane w artykule opublikowanym 7 października na serwerze arXiv.

https://arxiv.org/abs/2310.04827

Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #423 dnia: Grudzień 14, 2023, 00:58 »
To otoczki halo wypaczają galaktyki.

Ilustracja powyżej: Dysk gwiazdowy Drogi Mlecznej zanurzony w rozciągniętej i przechylonej otoczce halo (Melissa Weiss / Center for Astrophysics, Harvard & Smithsonian / CC-BY NC 4.0)


Galaktyki spiralne, takie jak Droga Mleczna, mają silnie zagnieżdżoną strukturę. Cienki i rozległy dysk gwiazdowy (to ten, do którego należy też Słońce) jest otoczony grubszym dyskiem ze starszych gwiazd, który jest następnie "zapakowany" w znacznie bardziej rozległe tak zwane halo galaktycznym. U podstaw i jednocześnie na zewnątrz całej tej struktury leży ciekawa część galaktyki, której nie widzimy i nie możemy w żaden podobny sposób wykryć: halo ciemnej materii, w którym osadzona jest galaktyka.

Zatem galaktyki spiralne otacza halo ciemnej, niewidzialnej materii, która stanowi 85% masy naszego Wszechświata. Nowe badania pokazują teraz, że kąt nachylenia takich otoczek halo może wpływać na budowę i przestrzenną orientację halo gwiazdowego oraz samego spłaszczonego dysku galaktyki.

Choć wszelkie zjawiska zachodzące w halo ciemnej materii Drogi Mlecznej mogą wydawać się nam dość odległe względem tego, co dzieje się w cienkim dysku gwiazdowym, badania przeprowadzone przez Jiwona Jesse Hana z Centrum Astrofizyki Harvard & Smithsonian i jego współpracowników wykazały wyraźny związek między tymi dwoma aspektami galaktycznej struktury. W swoim najnowszym artykule zespół Hana badał wzajemne dopasowanie dysków gwiazdowych galaktyk i wewnętrznych obszarów ich halo ciemnej materii, a także sprawdził, co może wynikać z rozbieżności pomiędzy nimi.

Przy pomocy znanej symulacji kosmologicznej TNG50 – części pakietu symulacji kosmologicznych IllustrisTNG – zespół wyselekcjonował próbkę syntetycznych, sztucznych galaktyk, pod wieloma względami podobnych do Drogi Mlecznej i naszej sąsiedniej galaktyki Andromedy (M31). Symulowane galaktyki miały masy podobną do obecnej masy Drogi Mlecznej, a także zbliżony kształt dysku. Nie miały też żadnych innych masywnych galaktyk w swoim „pobliżu”, tu zdefiniowanym jako promień 500 kiloparseków, czyli 1,6 miliona lat świetlnych.


Schemat budowy i składu halo Drogi Mlecznej (NASA / ESA / / A. Feild (STScI))

Kąt nachylenia ciemnego halo względem kąta nachylenia halo gwiezdnego wyliczony dla galaktyk podobnych do Drogi Mlecznej w symulacji TNG50. Zmierzone nachylenie halo gwiezdnego Drogi Mlecznej zaznaczono różowym, zacienionym obszarem. Wykres po prawej stronie pokazuje najbardziej prawdopodobny kąt nachylenia ciemnego halo Drogi Mlecznej. (Han et al. / Astrophysical Journal 2023)

Dla wszystkich 198 galaktyk Drogi Mlecznej zespół zmierzył kąt pomiędzy wewnętrznym ciemnym halo (częścią halo znajdującą się w odległości 50 kiloparseków od dysku gwiezdnego), halo gwiazdowym i dyskiem galaktyki. W ciągu 6 miliardów lat, jakie objęła ta symulacja, kąty nachylenia między wewnętrznymi ciemnymi halo i dyskami gwiazdowymi oraz między halo gwiazdowymi i dyskami galaktyk, zmieniały się. Jednak wewnętrzne ciemne halo i halo gwiazdowe wykazywały przy tym podobne zachowanie, przechylając się i odkształcając w tych samych kierunkach.

Gwiezdne halo Drogi Mlecznej jest obecnie nachylone względem jej dysku gwiezdnego pod kątem około 20 do 30 stopni. Biorąc pod uwagę podobne nachylenia ciemnych i gwiazdowych halo w symulacji, oznaczałoby to, że wewnętrzne ciemne halo Drogi Mlecznej jest również nachylone względem dysku pod kątem około 20 stopni. Jaki zatem wpływ ma tak nachylone ciemne halo?

Han i jego zespół przeprowadzili jeszcze głębszą symulację, koncentrując się na zachowaniu pojedynczego cyfrowego analogu Drogi Mlecznej, który doświadczył połączenia z innym obiektem przed 7 miliardami lat. Taka galaktyczna fuzja przechyliła halo z ciemnej materii galaktyki o 50 stopni, a halo gwiezdne podążyło za nim, kierowane grawitacyjnym przyciąganiem tego ciemnego halo. Z biegiem czasu, pod wpływem tarcia, momentu obrotowego i innych czynników, nachylenie ciemnej i gwiezdnej otoczki galaktyki zmniejszyło się do blisko 20 stopni.

Efekty nachylenia halo ciemnej materii były też w tym scenariuszu odczuwalne w cienkim dysku gwiazdowym: kilka miliardów lat po połączeniu w tym płaskim wcześniej dysku pojawiło się w symulacji wypaczenie. Wypaczenie z czasem nieco się zmniejszyło, ale w zmienionej formie utrzymało się aż do "dziś". Wiemy z kolei, że tak jak ta sztuczna, symulowana galaktyka, i Droga Mleczna doświadczyła połączenia miliardy lat temu. Także ona ma obecnie wypaczony dysk. Opierając się na wynikach symulacji, zespół Hana sugeruje zatem, że galaktyczne fuzje zachodzące wraz z przechyleniem halo powodują długotrwałe wypaczenia dysków galaktycznych – które są obecnie obserwowane w ponad połowie wszystkich galaktyk spiralnych.

https://skyandtelescope.org/astronomy-news/dark-halos-and-warped-disks/




« Ostatnia zmiana: Grudzień 14, 2023, 01:03 wysłana przez Slavin »

Polskie Forum Astronautyczne

Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #423 dnia: Grudzień 14, 2023, 00:58 »

Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #424 dnia: Luty 10, 2024, 11:03 »
Jak czarne dziury przeszły od tworzenia gwiazd do ich gaszenia.

Na ilustracji: Przejście tempa formowania się gwiazd i wzrostu czarnych dziur wraz ze spadkiem przesunięcia ku czerwieni od reżimów, w których dominuje dodatnie sprzężenie zwrotne, do późniejszej epoki, w której sprzężenie zwrotne jest w dużej mierze ujemne. Źródło: Steven Burrows, Rosemary Wyse, and Mitch Begelman.



Dzięki JWST astronomowie zidentyfikowali jedne z najwcześniejszych galaktyk powstałych we Wszechświecie.

Astronomowie od dawna starają się zrozumieć wczesny Wszechświat, a dzięki Kosmicznemu Teleskopowi Jamesa Webba (JWST) pojawił się kluczowy element układanki. Wykrywające podczerwień „oczy” teleskopu dostrzegły szereg małych, czerwonych punktów, zidentyfikowanych jako jedne z najwcześniejszych galaktyk powstałych we Wszechświecie.

To zaskakujące odkrycie jest nie tylko wizualnym cudem, ale także wskazówką, która może odkryć tajemnice tego, jak galaktyki i ich enigmatyczne czarne dziury rozpoczęły swoją kosmiczną podróż.

Zdumiewającym odkryciem JWST jest to, że Wszechświat nie tylko ma te bardzo zwarte i jasne obiekty w podczerwieni, ale prawdopodobnie są to regiony, w których już istnieją ogromne czarne dziury – wyjaśnił stypendysta JILA i profesor astrofizyki na University of Colorado Boulder, Mitch Begelman. Uważano, że to niemożliwe.

Begelman i zespół astronomów, w tym Joe Silk, profesor astronomii na Uniwersytecie Johnsa Hopkinsa, opublikowali swoje odkrycia w czasopiśmie The Astrophysical Journal Letters, sugerując, że potrzebne są nowe teorie powstawania galaktyk, aby wyjaśnić istnienie tych olbrzymich czarnych dziur.

Potrzeba czegoś nowego, aby pogodzić teorię powstawania galaktyk z nowymi danymi – powiedział Silk, główny autor potencjalnie przełomowego badania.

Tradycyjna opowieść o formowaniu się galaktyk

Zastanawiając się nad tym, w jaki sposób formują się galaktyki, astronomowie zakładali wcześniej nieco uporządkowaną ewolucję. Konwencjonalne teorie zakładały, że galaktyki tworzą się stopniowo, gromadząc się przez miliardy lat. Uważano, że w tej powolnej kosmicznej ewolucji gwiazd wyłaniają się jako pierwsze, rozświetlając pierwotną ciemność.

Pomysł polegał na tym, że przeszliśmy od wczesnej generacji gwiazd do galaktyk zdominowanych głównie przez gwiazdy – dodał Begelman. Następnie, pod koniec tego procesu, zaczęły powstawać czarne dziury.

Uważano, że supermasywne czarne dziury, te enigmatyczne i potężne byty, pojawiają się po pierwszych gwiazdach, spokojnie rosnąc w jądrze galaktyki. Były one postrzegane jako regulatory, które od czasu do czasu wybuchały, aby złagodzić formowanie się nowych gwiazd, utrzymując w ten sposób galaktyczną równowagę.

Podważanie konwencjonalnej mądrości

Dzięki obserwacjom „małych czerwonych kropek” przez JWST naukowcy odkryli, że pierwsze galaktyki we Wszechświecie były jaśniejsze niż oczekiwano, ponieważ wiele z nich pokazywało gwiazdy współistniejące z centralnymi czarnymi dziurami znanymi jako kwazary.

Kwazary są najjaśniejszymi obiektami we Wszechświecie – wyjaśnił Silk. Są produktami akrecji gazu na masywne czarne dziury w jądrach galaktyk, które generują ogromną jasność, przyćmiewającą ich galaktyki macierzyste. Są jak potwory w kukułczym gnieździe.

Widząc współistnienie gwiazd z czarnymi dziurami, naukowcy szybko zdali sobie sprawę, że konwencjonalne teorie powstawania galaktyk muszą być błędne. [Te nowe dane] wyglądają tak, jakby [proces był] odwrócony, że te czarne dziury uformowały się wraz z pierwszymi gwiazdami, a następnie reszta galaktyki podążyła za nimi – powiedział Begelman. Mówimy, że wzrost czarnej dziury na początku promuje gwiazdy. Dopiero później, gdy zmieniają się warunki, przechodzi w tryb wyłączania gwiazd.

Na podstawie tego zaproponowanego nowego procesu, naukowcy odkryli, że związek między formowaniem się gwiazd a powstawaniem czarnych dziur wydawał się być bliższy niż się początkowo sądziło, ponieważ każde zjawisko początkowo wzmacniało wzrost drugiego poprzez proces znany jako dodatnie sprzężenie zwrotne.

Formowanie się gwiazd przyspiesza formowanie się masywnych czarnych dziur i odwrotnie, w nierozerwalnie połączonej grze przemocy, narodzin i śmierci, która jest nowym światłem formowania się galaktyk – powiedział Silk.

Następnie, po prawie miliardzie lat, pielęgnujące olbrzymy zaczęły tłumić, wyczerpując zbiorniki gazu w swoich galaktykach i wygaszając formowanie się gwiazd. To „ujemne sprzężenie zwrotne” było spowodowane wypływami oszczędzającymi energię – potężnymi wiatrami, które wypychały gaz z galaktyk, pozbawiając je materiału potrzebnego do tworzenia nowych gwiazd.

Nowa galaktyczna oś czasu

Uzbrojeni w nowe odkrycia na temat zachowania czarnych dziur, naukowcy zaproponowali nową oś czasu dla przejścia od dodatniego do ujemnego sprzężenia zwrotnego we wczesnym formowaniu się galaktyk. Przyglądając się różnym widmom światła i sygnaturom chemicznym emitowanym przez te „małe czerwone kropki”, naukowcy sugerują, że ta zmiana nastąpiła około 13 miliardów lat temu, czyli miliard lat po Wielkim Wybuchu, w okresie, który astronomowie klasyfikują jako z ≈6.

Zidentyfikowanie tej epoki przejściowej pozwala astronomom skoncentrować się na konkretnych okresach w historii Wszechświata. To może być pomocne w opracowaniu przyszłych strategii obserwacyjnych, wykorzystując teleskopy takie jak JWST i inne, aby skuteczniej badać wczesny Wszechświat. Dodatkowo, poprzez zrozumienie, kiedy ta zmiana nastąpiła, astronomowie mogą lepiej ocenić w szerszym kontekście charakterystykę współczesnych galaktyk, w tym ich rozmiar, kształt, skład gwiazdowy i poziom aktywności.

Weryfikacja nowego procesu

Aby zweryfikować tę nową teorię współpracy gwiazd i czarnych dziur w procesie formowania się galaktyk i zapewnić dalszy wgląd w zachodzące procesy, potrzebne są symulacje komputerowe.

To zajmie trochę czasu – powiedział Begelman. Obecne symulacje komputerowe są raczej prymitywne, a do zrozumienia wszystkiego potrzebna jest wysoka rozdzielczość. Wymaga to dużej mocy obliczeniowej i jest kosztowne.

Do tego czasu społeczność astronomiczna może podjąć inne kroki, aby zweryfikować i potwierdzić tę nową teorię.

Kolejne kroki będą wynikać z ulepszonych obserwacji – dodał Silk. Pełna moc JWST do badania widm najbardziej odległych galaktyk zostanie uwolniona w ciągu najbliższych lat.

Zarówno Begelman, jak i Silk są optymistami, jeżeli chodzi o przyjęcie proponowanego przez nich pomysłu resztę branży.

O ile mi wiadomo, jesteśmy pierwszymi, którzy poszli w tak ekstremalnym kierunku – powiedział Begelman. Przez lata wraz z moimi współpracownikami pracującymi nad problemem powstawania czarnych dziur przesuwałem granice. Ale JWST pokazuje nam, że nie myśleliśmy wystarczająco nieszablonowo.

https://jila.colorado.edu/news-events/articles/new-findings-jwst-how-black-holes-switched-creating-quenching-stars

https://www.urania.edu.pl/wiadomosci/jak-czarne-dziury-przeszly-od-tworzenia-gwiazd-do-ich-gaszenia

https://iopscience.iop.org/article/10.3847/2041-8213/ad1bf0
« Ostatnia zmiana: Luty 10, 2024, 11:05 wysłana przez Slavin »

Offline Slavin

  • Weteran
  • *****
  • Wiadomości: 922
  • Ciekłym metanem i LOX-em LCH4/LOX Methalox
Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #425 dnia: Luty 15, 2024, 19:46 »
Jak powstają supermasywne czarne dziury?

Czarne dziury to niezwykle ciekawe i unikatowe obiekty. Są to obszary czasoprzestrzeni, których z uwagi na wpływ grawitacji, nic, łącznie ze światłem i informacją, nie może opuścić. Mogą się one różnić momentem pędu, ładunkiem, ale przede wszystkim, ściśle związanymi ze sobą masą i rozmiarem. Najmniejsze z nich mają masy rzędy jedynie kilku mas Słońca – za to największe – miliardów mas Słońca. Jako że na pierwszy rzut oka mogą się one wydawać bardzo podobne i różnić jedynie objętościami, można by wnioskować, że mają to samo pochodzenie. Jak się jednak okazuje, nie jest to takie proste – problemem w tym przypadku są największe z nich.



Wykres zaobserwowanych mas najgęstszych obiektów we Wszechświecie.

Mechanizm powstawania gwiazdowych czarnych dziur

Aby zrozumieć problem powstawania największych czarnych dziur, trzeba najpierw zrozumieć mechanizm powstawania tych o normalnych masach. Noszą one nazwę gwiazdowych czarnych dziur i jak sama nazwa wskazuje, powstają z gwiazd. Nie są to jednakże byle jakie gwiazdy, a jedynie największe z nich. Po przejściu takiej gwiazdy przez jej życie czeka ją tylko jeden los – śmierć. Gwiazda, nie będąc w stanie utrzymać równowagi hydrostatycznej między siłą grawitacji z zewnątrz a siłą ciśnienia z wewnątrz, gwałtownie zapada się. Następuje wtedy jedna z największych eksplozji we Wszechświecie, czyli supernowa typu II, która niesie ze sobą powstanie czarnej dziury (lub gwiazdy neutronowej).



Schemat ewolucji gwiazd.

Z tym mechanizmem jest jednak pewien problem – nawet najbardziej masywne gwiazdy mają masy rzędu kilkuset mas Słońca. Czarne dziury, powstające z gwiazd o i tak już niskiej masie, tracą na dodatek jej część w wyniku supernowej, która towarzyszy ich powstaniu. Jak więc otrzymać czarną dziurę o masie miliardów mas Słońca? Otóż początkowo myślano, że taka czarna dziura nabiera swoją masę poprzez pożeranie innych obiektów, ale okazało się, że jest z tym pewien problem – czarne dziury powiększają się bardzo powoli.

Czym jest tempo akrecji czarnych dziur?

Czarne dziury powiększają się w bardzo wolnym tempie. Może się to wydawać nieintuicyjne – w końcu są to obiekty o przyciąganiu grawitacyjnym tak silnym, że nic nie może od nich uciec. Powodem tego jest jednak dziwne, lecz ciekawe zjawisko, czyli akrecja. Polega ona na tym, że w wyniku wielkich momentów pędu, które osiągają cząsteczki pożerane przez czarne dziury, nie są one w stanie opaść bezpośrednio na czarną dziurę. Zamiast tego zaczynają wokół niej orbitować, tworząc dysk akrecyjny, zdecydowanie spowalniając tempo przybierania masy przez czarną dziurę. Masę pożeraną przez czarną dziurę w danym czasie nazywamy jej tempem akrecji.

Co ciekawe, tempo akrecji można opisać wzorem – zrobił to Sir Hermann Bondi, austriacki astrofizyk, jedynie około 20 lat po pierwotnym zaproponowaniu przez Alberta Einsteina istnienia czarnych dziur. Jednakże okazało się, że mimo wzrostu masy czarnej dziury, a co za tym idzie, jej przyciągania grawitacyjnego, tempo akrecji rośnie bardzo powoli. Jest to spowodowane tym, że mimo rośnięcia masy czarnej dziury, rosną również jej rozmiary, a co za tym idzie, odległość od punktu gdzie skupiona jest cała masa czarnej dziury – osobliwości.

Naukowcy na podstawie obserwacji obliczyli – między innymi z powyższego wzoru – tempa akrecji różnych czarnych dziur, od najmniejszych, po największe. Okazało się, że czarne dziury przybierają około 1% ich początkowej masy na 5 milionów lat. Oznacza to, że o ile jest możliwe powstanie supermasywnej czarnej dziury poprzez zwykłe pożeranie materii, jest to proces bardzo długotrwały. Z tego powodu supermasywne czarne dziury musiały powstać w jakiś inny sposób, ponieważ istnieją czarne dziury o masach rzędu miliardów mas Słońca, które są od nas oddalone o miliardy lat świetlnych, co znaczy, że miały taką masę już bardzo dawno temu. Jako wyjaśnienie tego problemu amerykański astrofizyk Mitchell Begelman z Uniwersytetu Kolorado w Boulder stworzył niezwykłą teorię, opierającą się na prostym pytaniu – co jeśli istniały większe gwiazdy?

Quasi-gwiazdy

Hipotetyczne gwiazdy, które Begelman nazwał quasi-gwiazdami, miałyby masy rzędu milionów mas Słońca. Powstawałyby podobnie jak inne gwiazdy, czyli w wyniku gromadzenia się gazu w obłokach gazowych. Jednakże w przypadku quasi-gwiazd materia z obłoków gazowych byłaby skupiana przez ciemną materię, przez co gromadziłoby się jej znacznie więcej. Dlaczego więc nie możemy zaobserwować takich gwiazd?

Powodem tego jest to, że quasi-gwiazdy mogłyby powstawać jedynie we wczesnych latach Wszechświata, których nie jesteśmy w stanie zaobserwować, ponieważ nasze przyrządy optyczne nie są wystarczająco dokładne. Z tego powodu nasuwa się kolejne pytanie: „dlaczego quasi-gwiazdy nie mogą powstawać aktualnie?”. Otóż problem polega na metaliczności aktualnych obłoków gazowych, czyli zawartości pierwiastków cięższych metali. Aktualnie jest ona po prostu za wysoka i gdyby nagromadziło się tyle materii, byłaby ona za ciężka i skończyłoby się to wybuchem supernowej.



Porównanie rozmiarów największych gwiazd i hipotetycznej quasi-gwiazdy.

W wyniku przyciągania poprzez ciemną materię, ilość gazu, która jest gromadzona, jest zbyt duża, by quasi-gwiazda mogła ją pochłonąć. Z tego powodu z wnętrza gwiazdy nie może wydostać się powstały w wyniku reakcji termojądrowej nadmiar ciepła i gwiazda rozgrzewa się coraz bardziej. W końcu, przy temperaturze około 500 milionów stopni, w jądrze gwiazdy zachodzi reakcja, w wyniku której powstają neutrina, które, uciekając z wnętrza gwiazdy, zabierają ze sobą część ciepła, czego wynikiem jest zachwianie równowagi hydrostatycznej gwiazdy. Zwykle kończyłoby się to supernową, jednakże gwiazda jest na tyle duża, że mimo implozji jej jądra żyje dalej, lecz ma teraz czarną dziurę w swoim centrum.



Wizualizacja równowagi hydrostatycznej.

W wyniku działania grawitacji, która chce skompresować resztę gwiazdy, dysk akrecyjny zostaje wepchnięty bezpośrednio do czarnej dziury i zaczyna ona powiększać swoją masę w znacznie szybszym tempie, niż byłoby to możliwe w normalnym przypadku. W wyniku tego wydzielana jest gigantyczna ilość promieniowania, która stawia opór sile grawitacji, efektem czego jest przywrócenie równowagi hydrostatycznej. Jest to jednak krótkotrwałe, gdyż im dłużej równowaga trwa, tym więcej materii czarna dziura pożera, tym mniejsza staje się gwiazda i zarazem siła grawitacji. Po pewnym czasie równowaga ponownie zostaje zachwiana, ale tym razem jest to już ostateczne i quasi gwiazda kończy swój żywot wybuchem znacznie większym, niż jakakolwiek znana nam supernowa.



Wizja artystyczna jednego z największych w historii wybuchów supernowej, 2006gy.

Po wybuchu z niegdyś potężnej gwiazdy zostaje jedynie czarna dziura o masie stu tysięcy mas Słońca. Jak się okazuje, nawet z tak wielkiej gwiazdy nie jest w stanie powstać supermasywna czarna dziura. Jednak spokojna głowa, nie wszystko stracone – takie czarne dziury byłyby protoplastami znanych nam dziś dobrze gigantów. Mogłyby one standardowo pochłaniać materię, powoli przyjmując rozmiar mniejszych z supermasywnych czarnych dziur lub znacznie zwiększać swoją masę – poprzez łączenie się razem.

https://arxiv.org/pdf/0711.4078.pdf

https://arxiv.org/pdf/2010.06908.pdf

https://academic.oup.com/mnras/article/414/3/2751/1046448?login=false

https://pl.wikipedia.org/wiki/Quasistar









« Ostatnia zmiana: Luty 15, 2024, 19:49 wysłana przez Slavin »

Polskie Forum Astronautyczne

Odp: Astrofizyka - Badania różne (zbiorczo)
« Odpowiedź #425 dnia: Luty 15, 2024, 19:46 »