W stronę Księżyca 11.12. 2022 o 07:38:13 z Cape Canaveral wystrzelona została RN Falcon-9R, która wyniosła na orbitę eliptyczną o apogeum ponad 1 500 000 km japoński lądownik księżycowy HAKUTO-R M1 wraz z arabskim pojazdem Rashid, japońskim Sora-Q i amerykańskim satelitą Lunar Flashlight. Pierwszy stopień RN (B1073.5) wylądował na LZ-2.
http://lk.astronautilus.pl/n221201.htm#06Falcon 9 launches HAKUTO-R M1 and Lunar FlashlightMISSION STATS:189th launch of a Falcon 9 rocket since 2010
198th launch of Falcon rocket family since 2006
5th launch of Falcon 9 booster B1073
162nd Falcon 9 launch from Florida’s Space Coast
105th Falcon 9 launch from pad 40
160th launch overall from pad 40
129th flight of a reused Falcon 9 booster
1st SpaceX launch for ispace
3rd SpaceX launch of a moon mission
55th Falcon 9 launch of 2022
56th launch by SpaceX in 2022
54th orbital launch attempt based out of Cape Canaveral in 2022
https://spaceflightnow.com/2022/12/11/falcon-9-ispace-mission-1-live-coverage/https://www.americaspace.com/2022/12/11/spacex-lofts-moon-lander-rover-ice-seeker-approaches-60-launch-year/https://www.nasaspaceflight.com/2022/12/hakuto-r-m1/https://en.wikipedia.org/wiki/Hakuto-R_Mission_1Hakuto-R M1 (~1000 kg); 340 kg (dry)
https://space.skyrocket.de/doc_sdat/hakuto-r-m1.htmLunar Flashlight CubeSat (6U) (~14 kg)
https://space.skyrocket.de/doc_sdat/lunar-flashlight.htm===
2) 21.03.2023 o 02:24 CET sonda weszła na orbitę wokół Księżyca.
http://lk.astronautilus.pl/sondy/hakuto-r.htmhttps://www.thenationalnews.com/uae/uae-in-space/2023/03/21/uaes-rashid-rover-enters-lunar-orbit/https://ispace-inc.com/news-en/?p=4460https://twitter.com/ispace_inc/status/1638165910585495555https://twitter.com/Kosmo_Michal/status/16382059280163225603)
“Since we have successfully completed the Lunar Orbit Insertion Maneuver, we have arrived in a stable orbit around the Moon. In orbit, the lander periodically enters the Moon's shadow, causing eclipse from the lander's perspective similar to what's seen from Earth.” (1/2)
“Every eclipse poses challenges—for example, since the lander is in the dark, the temp of devices can drop quickly as its natural heater (the Sun) is hidden. The lander is equipped to automatically handle this harsh environment."—Neo Masawat: Spaceflight Operations Engineer (2/2)
https://twitter.com/ispace_inc/status/1640279648557998080https://twitter.com/ispace_inc/status/16403050978454814734) Zminiaturyzowany układ napędowy satelity – pierwszy tego rodzaju w historii – okazał się niezdolny do wygenerowania wystarczającego ciągu , aby dostarczyć CubeSata Lunar Flashlight na orbitę wokółksiężycową, pomimo wielomiesięcznych wysiłków zespołu operacyjnego.
Ponieważ CubeSat nie może wykonywać manewrów, aby pozostać w układzie Ziemia-Księżyc, NASA ogłosiła zakończenie misji.
Chociaż układ napędowy nie był w stanie wytworzyć pożądanego ciągu – prawdopodobnie z powodu nagromadzenia zanieczyszczeń w przewodach paliwowych steru strumieniowego – nowo opracowane komponenty układu napędowego przekroczyły oczekiwania dotyczące wydajności.
Zminiaturyzowany czterolaserowy reflektometr misji, instrument naukowy, który nigdy wcześniej nie był w kosmosie, również przeszedł pomyślnie testy, dając zespołowi naukowemu misji pewność, że laser byłby w stanie wykryć lód, gdyby był obecny na powierzchni Księżyca.
NASA Calls End to Lunar Flashlight After Some Tech SuccessesMay 12, 2023
This illustration depicts NASA’s Lunar Flashlight, with its four solar arrays deployed, shortly after launch in December. Soon after, the briefcase-size CubeSat experienced thruster issues that prompted months of troubleshooting efforts by the mission’s operations team. Credit: NASA/JPL-CaltechWhile the CubeSat couldn’t reach the lunar South Pole to help seek ice, it fulfilled several technology goals that will empower future missions for the benefit of humanity.
Despite the mission’s technological wins, Lunar Flashlight’s miniaturized propulsion system struggled to provide sufficient thrust to put the CubeSat on course for the planned near-rectilinear halo orbit that would have given the spacecraft weekly flybys of the Moon’s South Pole.
The team suspects that debris obstructed the fuel lines, causing the diminished and inconsistent thrust. The miniaturized propulsion system included an additively manufactured fuel feed system that likely developed the debris – such as metal powder or shavings – and obstructed fuel flow to the thrusters, limiting their performance. Although the team devised a creative method for using just one thruster to maneuver the spacecraft, Lunar Flashlight needed more consistent thrust to reach its planned orbit.
The operations team calculated a new orbit that could be reached using the spacecraft’s small amount of potential remaining thrust. The plan called for putting the CubeSat on a path that would place it in orbit around Earth rather than the Moon, with monthly flybys of the lunar South Pole. While this would have meant fewer flybys, the spacecraft would have flown closer to the surface.
With the mission running out of time to arrive at the needed orbit, the operations team tried to dislodge any debris from the fuel lines by increasing the fuel pressure well beyond the propulsion system’s designed capacity. Despite limited success, the required trajectory correction maneuvers couldn’t be completed in time.
https://www.jpl.nasa.gov/news/nasa-calls-end-to-lunar-flashlight-after-some-tech-successesThe upgraded Iris radio, which was used to reliably communicate with the Deep Space Network, featured a new precision navigation capability that future small spacecraft will use to rendezvous and land on solar system bodies.
Lunar Flashlight’s never-before-flown Sphinx flight computer is a low-power system designed to withstand the radiation of space. It continues to perform well, proving the computer can reliably control future CubeSat missions.
https://twitter.com/NASAJPL/status/1657124939248566277
5 18.05.23)
https://twitter.com/NASAJPL/status/1658551775027417089