Autor Wątek: Kalendarium historycznych wydarzeń  (Przeczytany 59958 razy)

0 użytkowników i 1 Gość przegląda ten wątek.

Offline ekoplaneta

  • Weteran
  • *****
  • Wiadomości: 6745
  • One planet Once chance
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #330 dnia: Lipiec 17, 2019, 22:19 »
Dziś mija 44 rocznica lotu Sojuz-Apollo. Właśnie 17 lipca 1975 roku oba statki połączyły się i latały razem do 19 lipca:

https://pl.wikipedia.org/wiki/Sojuz-Apollo

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #331 dnia: Lipiec 21, 2019, 19:13 »
The exploration of space in 10 key dates
by Bénédicte Rey JULY 20, 2019


Russian cosmonaut Yuri Gagarin, the first man in space, in his Vostok 1 capsule on April 12, 1961
From the Soviet Union's pioneering satellite to the first man on the Moon 50 years ago, here are 10 key dates in space exploration.

1957: Sputnik

On October 4, 1957, Moscow launches the first artificial space satellite, Sputnik 1, ushering in the Cold War tussle for the cosmos.

The beach ball-sized aluminium sphere takes 98 minutes to orbit the Earth and sends back the first message from space, simple "beep-beep-beep" radio signals.

On November 3, Sputnik 2 carries the first living being to fully orbit the Earth, a small street dog called Laika. She dies after a few hours.

1961: Gagarin, first man

On April 12, 1961, Soviet cosmonaut Yuri Gagarin becomes the first man in space, completing a single, 108-minute orbit.

Twenty-three days later, Alan Shepard is the first American in space when he makes a 15-minute trip on May 5.

The Cold War rivals are only joined in space by a third country in 2003 when China sends up Yang Liwei onboard Earth orbiter Shenzou V.

1969: on the Moon

On July 21, 1969, US astronaut Neil Armstrong is the first man to step onto the Moon, his teammate Edwin Aldrin joining him around 20 minutes later.

Between 1969 and 1972, 12 astronauts—all American—walked on the Moon as part of NASA's Apollo program.


The Soviet-Russian space station Mir, which orbited the Earth from 1986 to 2001

1971: space station

On April 19, 1971, the Soviet Union launches the first orbital space station, Salyut 1.

Construction of the still-operating International Space Station (ISS) starts in 1998. The biggest man-made structure in space, it orbits Earth 16 times a day.

The ISS, in which 16 countries participate, took over from the Russian space station Mir, which was brought back to Earth in 2001 after 15 years in orbit.

1976: Mars

On July 20, 1976, US spacecraft Viking 1 becomes the first to successfully land on Mars and send back images of the Red Planet.

The robot Opportunity explored Mars between 2004 and 2018, with NASA's Curiosity Rover still active there.

About 40 missions have been sent to Mars, more than half failing.

1981: space shuttle

On April 12, 1981, the US space shuttle Columbia, the first reusable manned spacecraft, makes its first voyage.

It is followed by Challenger, Discovery, Atlantis and Endeavour, which serve the ISS until the shuttle programme winds up in 2011.

The United States has since depended on Russia to transport its astronauts to the ISS.


The history of space exploration, ahead of the 50th anniversary of the first human steps on the Moon by Neil Armstrong on July 20, 1969

Two US shuttles were destroyed in flight, with the loss of 14 astronauts: Challenger in 1986 and Columbia in 2003.

1990: Hubble

On April 25, 1990, the Hubble is the first space telescope to be placed into orbit, at 547 kilometres (340 miles) from Earth.

Thirteen metres (42 feet) long, Hubble revolutionises astronomy, allowing scientists to observe the planets and most distant stars and galaxies.

2001: space tourist

On April 28, 2001, Italian American multi-millionaire Dennis Tito, 60, becomes the world's first space tourist. He pays Russia $20 million to stay on the ISS for eight days.

In all, seven space tourists have taken Russian flights to the ISS.

2008: private SpaceX

On September 29, 2008, US company SpaceX is the first private venture to successfully launch a rocket into Earth's orbit, the Falcon 1.

SpaceX's Dragon cargo ship on May 22, 2012 becomes the first commercial spacecraft to visit the ISS.

2014: comet landing

On November 12, 2014, the European Space Agency places a small robot, Philae, on a comet more than 500 million kilometres from Earth. The first comet lander is part of a mission aiming to explore the origins of the Solar System.

The man-made object that is furthest away from the Earth is the unmanned US spaceship Voyager 1, launched in September 1977 and still travelling. In August 2012 it made it into interstellar space, about 13 billion miles from Earth.

© 2019 AFP
https://phys.org/news/2019-07-exploration-space-key-dates.html

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #332 dnia: Lipiec 24, 2019, 08:21 »
Spojrzenie 50 lat wstecz. Pierwsze lądowanie człowieka na Księżycu
19 lipca 2019, 17:37


panorama_view_of_apollo_17_lunar_surface Fot. NASA [nasa.gov]

Mija 50 lat od załogowego lądowania na Księżycu i momentu, gdy człowiek po raz pierwszy postawił stopę na innym obiekcie niebieskim niż Ziemia. Mimo postępu technologicznego zaistniałego od tamtego czasu, nikt nie powtórzył jak dotąd sukcesu programu Apollo i załogowych lotów na Księżyc.

21 lipca o godz. 2:56 czasu uniwersalnego, pięć dni po starcie rakiety nośnej Saturn V z misją Apollo 11, amerykański astronauta Neil Armstrong postawił pierwszy krok na powierzchni Księżyca.

Era kosmiczna rozpoczęła się jednak ponad 10 lat wcześniej, w 1957 roku, gdy Związek Radziecki wystrzelił Sputnika – pierwszego sztucznego satelitę Ziemi. Następną kluczową datą był rok 1961 – pierwszy lot człowieka w kosmos. I tu palmę pierwszeństwa zdobył Związek Radziecki, zaś pierwszym kosmonautą został Jurij Gagarin.

Stany Zjednoczone wyraźnie przegrywały początkową fazę wyścigu kosmicznego. Aby zmienić sytuację, musiały postawić na jakiś istotny cel - na tyle odległy, aby udało się nadrobić dystans do rywala, a może nawet go wyprzedzić. Dlatego w 1961 r. amerykański prezydent John F. Kennedy ogłosił, że przed końcem dekady przedstawiciele USA wylądują na Księżycu. Tak zaczął się projekt Apollo.

Nim jednak nastąpił sukces Apollo 11, potrzebna była praca tysięcy ludzi, różnorodne testy; opracowano też sporo wynalazków, z których część znalazła potem codzienne zastosowania, np. sprężyste wkładki do butów sportowych, bezprzewodowe wiertarki, urządzenia stosowane w telemedycynie i inne. Lot na Księżyc wymagał m.in. opracowania nowej, potężniejszej rakiety nośnej, niż stosowane do tej pory przez amerykańską agencję kosmiczną NASA. W ramach misji Apollo 11 użyto rakiety Saturn V. Ocenia się, że cały projekt Apollo kosztował ponad 25 miliardów dolarów, co odpowiada 153 miliardom dolarów według ich wartości w 2018 r.

Wiele osób kojarzy nazwę Apollo 11; dużo mniej pamięta, że już w trakcie wcześniejszej misji (Apollo 10) ludzie znaleźli się naprawdę blisko Księżyca. Astronauci oblecieli Księżyc dookoła w statku kosmicznym, przetestowano też moduł księżycowy, który do Srebrnego Globu zbliżył się zaledwie na 14 km. Lądowania wtedy jednak nie planowano, a lot miał być ostatecznym testem przed lotem Apollo 11.

Start misji Apollo 11 nastąpił 16 lipca 1969 r. z Centrum Lotów Kosmicznych na przylądku Canaveral (Floryda). Dzień później uruchomiono główny silnik, aby skorygować kurs w stronę Księżyca. 19 lipca minięto punkt, w którym grawitacja Księżyca przezwycięża grawitację Ziemi, dokonano też wejścia na orbitę okołokiężycową. 20 lipca moduł księżycowy "Eagle" („Orzeł”) oddzielił się od głównego statku. Załogę modułu stanowili: Neil Armstrong i Buzz Aldrin; w statku na orbicie okołoksiężycowej pozostał Michael Collins.



Fot. NASA [nasa.gov]
 
Tego samego dnia o godz. 20:17 czasu uniwersalnego „Orzeł” wylądował na powierzchni Księżyca na Morzu Spokoju (ciemne obszary widoczne na Księżycu nazwano "morzami", choć tak naprawdę nie ma tam wody). Podczas lądowania trzeba było przejść na częściowe sterowanie ręczne, bowiem automatyczny system kierował statek ku regionowi zbyt usianemu skałami. Astronauci byli w pogotowiu do natychmiastowego startu, gdyby okazało, iż jedna z podpór zapada się w księżycowym pyle lub gdyby nastąpił jakiś inny problem.

Wyjście astronautów na powierzchnię nastąpiło po kilku godzinach od wylądowania. 21 lipca o godz. 2:56 czasu uniwersalnego Neil Armstrong po drabince zszedł z lądownika i postawił pierwszy krok na powierzchni Księżyca, wypowiadając przy tym słowa: "To jest mały krok dla człowieka, ale wielki skok dla ludzkości" („It’s one small step for a man, but one giant leap for mankind”).

Następnie astronauci robili zdjęcia, nagrywali filmy, przeprowadzili badania naukowe, zebrali próbki skał (trochę ponad 21 kg) i postawili amerykańską flagę. Umieścili też odbłyśnik do odbijania wysyłanych z Ziemi wiązek laserowych, co umożliwiło precyzyjne zmierzenie odległości do Księżyca. Armstrong i Aldrin pokonali na Księżycu dystans około 250 metrów, spędzili na powierzchni 21 godzin i 36 minut (w tym 2 godziny - poza lądownikiem), po czym powrócili do modułu dowodzenia na orbicie i udali się w podróż powrotną na Ziemię. 24 lipca Apollo 11 wodował na Oceanie Spokojnym. Potem astronauci musieli przejść kwarantannę trwającą trzy tygodnie, na wypadek, gdyby zarazili się jakimiś bakteriami.

Co ciekawe, w czasie, gdy trwała amerykańska misja Apollo 11, Związek Radziecki prowadził misję bezzałogowej sondy Łuna 15, która miała przywieźć na Ziemię próbki gruntu księżycowego. 21 lipca o godz. 15:47 czasu uniwersalnego sonda rozpoczęła procedurę lądowania (w tym czasie astronauci amerykańscy przebywali jeszcze na Księżycu, we wnętrzu modułu księżycowego). Niestety na 4 minuty przed lądowaniem, na wysokości około 3 km nad powierzchnią, sonda przestała nadawać. Uważa się, iż rozbiła się na Morzu Przesileń.



Fot. NASA [nasa.gov]
 
Do 1972 roku NASA jeszcze kilkakrotnie wysyłała astronautów na powierzchnię Księżyca. Łącznie po Księżycu spacerowało 12 ludzi w ramach misji Apollo - od 11 do 17 (z wyjątkiem Apollo 13, w której z powodu problemów technicznych w trakcie lotu, nie zdecydowano się na samo lądowanie i nakazano astronautom powrót na Ziemię).

Sama zaś misja Apollo 11 okazała się medialnym hitem. Transmisja na żywo z lądowania Apollo 11 była oglądana w telewizji przez ponad pół miliarda ludzi na całym świecie (niektóre źródła podają nawet liczbę 600 milionów). Pobiła ówczesny rekord oglądalności i do dziś znajduje się w czołówce statystyk. Wydarzenie transmitowano również w polskiej telewizji, choć większość krajów boku wschodniego nie zdecydowała się na taki krok.

Fragment modułu księżycowego pozostał na powierzchni Srebrnego Globu. W 2009 roku udało się go sfotografować przy pomocy sondy orbitalnej Lunar Reconnaissance Orbiter (LRO). Kilka lat temu dzięki skanowaniu sonarowemu udało się z kolei zlokalizować na dnie Oceanu Atlantyckiego silniki F-1 z rakiety nośnej Saturn V, a później je wyłowić.

Moc obliczeniową i inne parametry komputerów, których używano w misji Apollo 11, porównuje się czasem z dzisiejszymi możliwościami analogicznych urządzeń - podkreślając, że obecnie większość smartfonów ma moc obliczeniową znacząco przekraczającą możliwości komputerów ze statku Apollo 11. Technologia komputerowa poczyniła ogromne postępy od tamtego czasu, jednak pomimo olbrzymiego rozwoju techniki, od zakończenia załogowych lotów na Księżyc w ramach projektu Apollo, nikt do tej pory nie powtórzył tego wyczynu.



Fot. NASA [nasa.gov]
 
Ostatnio pojawiają się jednak sygnały, m.in. zapowiedzi amerykańskiej administracji, świadczące o tym, że powrót na Księżyc może być realny i stać się etapem w realizacji jeszcze śmielszego celu: załogowego lotu na Marsa.

W ostatnich kilkunastu latach Księżyc badały (głównie - z orbity) automatyczne sondy amerykańskie, chińskie, indyjskie i europejskie, zaś niedawno, w kwietniu br., lądowania próbowała nawet prywatna bezzałogowa sonda izraelska (niestety rozbiła się). 3 stycznia 2019 r. na powierzchni Srebrnego Globu wylądowała chińska sonda Chang’e 4 wraz z łazikiem Yutu-2. Chiny zapowiadają, że wylądują na Księżycu także załogowo. Zdopingowało to Amerykanów, którzy zapowiedzieli powrót na Księżyc, łącznie ze zbudowaniem tam bazy (bazę zbudować chcą też Chińczycy).

Rocznicę sukcesu sprzed 50 lat świętuje NASA; wydarzenia z tej okazji planują też inne instytucje i organizacje. Międzynarodowa Unia Astronomiczna (IAU) proponuje, by w dniu rocznicy organizować publiczne pokazy Księżyca przez teleskopy; zachęca też do wspólnego spojrzenia na Srebrny Glob.

Misja Apollo 11 i inne etapy projektu Apollo były też inspiracją dla filmowców. W 1989 r. powstał film dokumentalny tej misji "For All Mankind", w 2016 r. "The Last Man on the Moon" (o ostatniej misji załogowej na Księżyc), a w tym roku premierę miał dokumentalny film pt. "Apollo 11".

Powstały też filmy fabularne nt. misji Apollo. Jednym z najbardziej znanych jest "Apollo 13" z 1995 r., który pokazuje przebieg tej pechowej misji księżycowej. W ubiegłym roku do kin wszedł zaś "Pierwszy człowiek" ("First Man"), przedstawiający historię życia pierwszego człowieka, który postawił stopę na Księżycu.


Autor: Krzysztof Czart, PAP

https://www.space24.pl/spojrzenie-50-lat-wstecz-pierwsze-ladowanie-czlowieka-na-ksiezycu

Wątek poświęcocony Apollo 11 http://www.forum.kosmonauta.net/index.php?topic=184.0

Wątki poświęcone astronautom Apollo 11

Neil A. Armstrong http://www.forum.kosmonauta.net/index.php?topic=234.0   
Michael Collins   http://www.forum.kosmonauta.net/index.php?topic=3739.msg134502#msg134502
Edwin E. Aldrin, Jr. http://www.forum.kosmonauta.net/index.php?topic=551.msg16378#msg16378

http://lk.astronautilus.pl/
http://lk.astronautilus.pl/loty/a11.htm

Artykuły astronautyczne

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #333 dnia: Lipiec 29, 2019, 19:58 »
35 lat temu 25 lipca 1984 roku druga kobieta w kosmosie została jednocześnie pierwszą kobietą, która odbyła spacer kosmiczny. Swietłana Sawickaja przebywała w otwartej przestrzeni kosmicznej przez 03h 33m 04s.

<a href="http://www.youtube.com/watch?v=e9RVFPq-hUo" target="_blank">http://www.youtube.com/watch?v=e9RVFPq-hUo</a>
https://www.youtube.com/watch?v=e9RVFPq-hUo

<a href="http://www.youtube.com/watch?v=Yx4WdTaQTvw" target="_blank">http://www.youtube.com/watch?v=Yx4WdTaQTvw</a>
https://www.youtube.com/watch?v=Yx4WdTaQTvw

35 лет назад: Светлана Савицкая стала первой женщиной, которая вышла в открытый космос
25 июля 2019

25 июля 1984 года впервые в истории человечества женщина-космонавт Светлана Савицкая осуществила выход в открытое космическое пространство. 3 часа 35 минут, проведённые ею в космосе, вошли в историю мировой космонавтики.

Вместе с космонавтом Владимиром Джанибековым они провели испытания уникального универсального ручного инструмента, с помощью которого можно было сваривать, резать и паять металл.

Испытательные работы группа закончила даже на несколько минут раньше отведенного на эксперимент времени. Никаких нештатных ситуаций не произошло. На Землю экипаж космического корабля «Союз Т-12» вернулся 29 июля 1984 года.

Савицкая также стала первой женщиной, совершившей два космических полета. Первый в 1982-м году, второй — в 1984-м.

Указом Президиума Верховного Совета СССР за мужество и героизм, проявленные при осуществлении космического полёта Светлана Савицкая была удостоена ордена Ленина и второй медали «Золотая Звезда».
https://sm-news.ru/35-let-nazad-svetala-savickaya-stala-pervoj-zhenshhinoj-kotoraya-vyshla-v-otkrytyj-kosmos-2240/

Artykuły astronautyczne

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #334 dnia: Lipiec 31, 2019, 22:43 »
20 lat temu 31 lipca 1999 roku zakończyła się misja sondy Lunar Prospector

Księżycowy pochówek E. Shoemakera
  W sondzie Lunar Prospector znajduje się mała urna z prochami Eugena Shoemakera - jednego z najbardziej
znanych planetologów, który zasłynął jako współodkrywca komety Shoemaker-Levy 9. Podobnie jak kometa,
która zderzyła się z Jowiszem w lipcu 1994 roku, Lunar Prospector zderzy się z Księżycem 31.07.1999 roku.
Tym samym choć w części spełni się życzenie pioniera planetologii, któremu drogę na Księżyc w ramach
programu Apollo zamknęło zdrowie. Shoemaker zginął w wypadku samochodowym a Australii w 1997 roku.
Na temat ostatniej fazy lotu sondy Lunar Prospector pisałem 01.07.99.
http://lk.astronautilus.pl/n990716.htm#13

<a href="http://www.youtube.com/watch?v=X99arC6ZGCc" target="_blank">http://www.youtube.com/watch?v=X99arC6ZGCc</a>
https://www.youtube.com/watch?v=X99arC6ZGCc

<a href="http://www.youtube.com/watch?v=47lWfc2bVKs" target="_blank">http://www.youtube.com/watch?v=47lWfc2bVKs</a>
https://www.youtube.com/watch?v=47lWfc2bVKs

<a href="http://www.youtube.com/watch?v=KjuMBPgKFYs" target="_blank">http://www.youtube.com/watch?v=KjuMBPgKFYs</a>
https://www.youtube.com/watch?v=KjuMBPgKFYs

https://solarsystem.nasa.gov/missions/lunar-prospector/in-depth/
https://www.nasa.gov/mission_pages/LCROSS/searchforwater/lunar_prospector.html

Początek misji :

<a href="http://www.youtube.com/watch?v=coNXoLXhcmE" target="_blank">http://www.youtube.com/watch?v=coNXoLXhcmE</a>
https://www.youtube.com/watch?v=coNXoLXhcmE

Sonda została wystrzelona 7 stycznia 1998 z kosmodromu na przylądku Canaveral, a lot do Księżyca zajął jej 105 godzin. Podczas 19 miesięcy pracy na orbicie ziemskiego satelity Lunar Prospector stworzył mapy składu chemicznego powierzchni, pola magnetycznego oraz grawitacyjnego, a także zbadał kratery bieguna północnego pod kątem obecności lodu i obserwował księżycowy efekt wydzielania gazów ze skorupy (ang. outgassing). Misja zakończyła się 31 lipca 1999 roku, gdy sonda celowo rozbiła się w zacienionym obszarze krateru Shoemaker w pobliżu bieguna południowego, w punkcie o współrzędnych: 87,5°S/42°E,podczas nieudanej próby wykrycia obecności wody.
https://pl.wikipedia.org/wiki/Lunar_Prospector

Artykuły astronautyczne

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #335 dnia: Sierpień 02, 2019, 04:47 »
31 lipca 2019 minęło 55 lat od uzyskania pierwszych zdjęć zbliżeniowych powierzchni Księżyca, wykonanych przez sondę
Ranger 7 , która obrazowała powierzchnię Księżyca aż do zderzenia z nim . Przesłała na Ziemię 4316 zdjęć. Była to pierwsza w pełni udana misja tego programu.

 
55 Years Ago: Ranger 7 Photographs the Moon
July 29, 2019 John Uri NASA Johnson Space Center


Left: Block 1 Ranger spacecraft. Right: Block 2 Ranger spacecraft, showing the black-and-white spherical capsule.


Block 3 Ranger spacecraft.

Long before Apollo astronauts set foot upon the Moon, much was unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, there were some who believed it was covered in a deep layer of dust that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface were available, only those obtained by Earth-based telescopes and grainy low-resolution images of the Moon’s far side obtained in 1959 by the Soviet Luna 3 robotic spacecraft.

The goal of the Ranger series of spacecraft was to acquire close-up images of the lunar surface. The program, begun in 1960, consisted of three phases of increasing complexity. The first phase of the program, designated “Block 1,” was designed to test the Atlas-Agena launch vehicle by placing a Ranger spacecraft in a highly elliptical Earth orbit where its equipment could be tested. The second “Block 2” phase built on the lessons of Block 1 to send three spacecraft to the Moon to collect images and data and transmit them back to Earth. Each Block 2 Ranger carried a television camera for collecting images, a gamma-ray spectrometer for studying the minerals in the lunar rocks and soil, and a radar altimeter for studying lunar topography. These spacecraft also carried a capsule containing a seismometer and transmitter that would be able to operate for up to 30 days after being dropped on the lunar surface, protected from the impact by being encased in balsa wood. The final “Block 3” phase consisted of four spacecraft that each carried a high-resolution imaging system consisting of six television cameras with wide- and narrow-angle capabilities. They were capable of taking 300 pictures per minute.

The Block 1 and 2 Rangers met with limited success. Neither Ranger 1 nor 2 left low Earth orbit due to booster problems. Ranger 3 missed the Moon by 22,000 miles and sailed on into solar orbit, returning no photographs but taking the first measurements of the interplanetary gamma ray flux. Ranger 4 was the first American spacecraft to impact the Moon, and on its far side to boot, but due to a power failure in its central computer could not return any images or data. Ranger 5 missed the Moon by 450 miles and also failed to return images due to a power failure and entered solar orbit. None of the Block 2 Rangers delivered their seismometer capsules to the Moon’s surface. Ranger 6, the first of the Block 3 spacecraft, successfully impacted on the Moon but its television system failed to return any images due to a short circuit. All hopes rested on Ranger 7 to redeem the program.



Television camera system aboard Ranger 7.


Launch of Ranger 7.

On July 28, 1964, Ranger 7 launched from Cape Canaveral, Florida. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. A mid-course correction was successfully carried out the day after launch. On July 31, Ranger 7 reached the Moon. During its final 17 minutes of flight, the spacecraft sent back 4,316 images of the lunar surface. The last image taken 2.3 seconds before impact had a resolution of just half-a-meter. The area in which it crashed – between Mare Nubium and Oceanus Procellarum – was renamed Mare Cognitum, Latin for “The Sea that has Become Known,” in honor of being the first spot on the Moon seen close-up.


Left: The first image returned by Ranger 7. Right: The final image returned by Ranger 7.


The Ranger 7 impact crater photographed during the Apollo 16 mission.


Left and right: Two images of the Ranger 7 impact crater, the second under low sun angle, taken by the Lunar Reconnaissance Orbiter spacecraft.

Two more Ranger missions followed. Ranger 8 returned more than 7,000 images of the Moon. Ranger 9 returned “live” TV images of the Alphonsus crater and the surrounding area as it approached its crash site in the crater – letting millions of Americans see the Moon up-close as it was happening. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of softlanders.

https://www.nasa.gov/feature/55-years-ago-ranger-7-photographs-the-moon
« Ostatnia zmiana: Październik 07, 2019, 00:35 wysłana przez Orionid »

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #336 dnia: Sierpień 06, 2019, 00:33 »
50 lat temu 21 lipca 1969, na 2 godziny przed startem z powierzchni Księżyca  LM-5 „Eagle” radziecka Łuna 15 podjęła próbę nieudanego miękkiego lądowania.

<a href="http://www.youtube.com/watch?v=Lmn4OIyVC_A" target="_blank">http://www.youtube.com/watch?v=Lmn4OIyVC_A</a>
https://www.youtube.com/watch?v=Lmn4OIyVC_A

<a href="http://www.youtube.com/watch?v=843lQkF7J9U" target="_blank">http://www.youtube.com/watch?v=843lQkF7J9U</a>
https://www.youtube.com/watch?v=843lQkF7J9U

Luna 15

(...) Finally, at 15:46:43 UT on July 21, 1969, a little more than 2 hours prior to the Apollo 11 liftoff from the Moon, Luna 15, now on its 52nd orbit around the Moon, began its descent to the surface. Transmissions, however, abruptly ceased after four minutes instead of nearly five. According to the original plan, the main engine was to fire for 267.3 seconds and bring the vehicle down to about 1.6 miles (2.5 kilometers) altitude. During the descent, transmissions from the vehicle abruptly and suddenly ended 237 seconds into the engine firing at 15:50:40 UT. The data seemed to show that the spacecraft was about 2 miles (3 kilometers) above the lunar surface. (...)
https://solarsystem.nasa.gov/missions/luna-15/in-depth/

https://ru.wikipedia.org/wiki/%D0%9B%D1%83%D0%BD%D0%B0-15

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #337 dnia: Sierpień 09, 2019, 05:17 »
30 lat temu 8 sierpnia 1989 rozpoczęła się misja astrometryczna ESA  Hipparcos



<a href="http://www.youtube.com/watch?v=SB_-mbjsy0E" target="_blank">http://www.youtube.com/watch?v=SB_-mbjsy0E</a>
https://www.youtube.com/watch?v=SB_-mbjsy0E

THE HIPPARCOS SATELLITE BEING INTEGRATED WITH THE ARIANE-4 BEFORE LAUNCH
Date: 30 July 1989, Last Update: 05 December 2013
Location: Centre Spatial Guyanais in Kourou, French Guiana
Copyright: ESA/CSG/Service Optique CSG



The Hipparcos satellite being integrated with the Ariane-4 before launch.

Launched in August 1989, Hipparcos was a pioneering space mission dedicated to the precise measurement of the positions, parallaxes and proper motions of the stars. The intended goal was to measure the five astrometric parameters (position in right ascension and declination, proper motion in right ascension and declination, and parallax) of more than 100 000 primary programme stars to a precision of some 2 to 4 milliarcsec, over a planned mission lifetime of 2.5 years, and the astrometric and two-colour photometric properties of some 400 000 additional stars (the Tycho experiment) to a somewhat lower astrometric precision. Having achieved the mission goals, communications with Hipparcos were terminated in August 1993.

Astrometry is the bedrock of the study of the Universe; the advancement in the field enabled by Hipparcos has affected every branch of space science and astronomy.
http://sci.esa.int/hipparcos/53169-hipparcos-integration-with-ariane-4/

https://www.cosmos.esa.int/web/hipparcos
https://www.cosmos.esa.int/web/hipparcos/brightest

https://pl.wikipedia.org/wiki/Hipparcos
https://en.wikipedia.org/wiki/Hipparcos

https://space.skyrocket.de/doc_sdat/hipparcos.htm

Offline mss

  • Weteran
  • *****
  • Wiadomości: 4900
  • Space is not only about science, it is a vision,
    • Astronauci i ich loty...
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #338 dnia: Sierpień 14, 2019, 17:05 »
Aug. 14, 2019
50 Years Ago: NASA Group 7 Astronaut Selection

On Aug. 14, 1969, NASA announced the selection of seven new astronauts. The Group 7 astronauts were pilots transferred from the US Air Force’s Manned Orbital Laboratory (MOL) Program that was cancelled on June 10, 1969. The MOL was a joint project of the U.S. Air Force (USAF) and the National Reconnaissance Office (NRO) to obtain high-resolution photographic imagery of America’s 1960s Cold War adversaries. After the cancellation, NASA invited the younger (under 35) MOL pilots to join its astronaut corps at the Manned Spacecraft Center, now the Johnson Space Center in Houston. The selected pilots were:

   
  • Major Karol J. “Bo” Bobko, USAF (32)
  • Commander Robert L. Crippen, US Navy (32)
  • Major C. Gordon Fullerton, USAF (31)
  • Major Henry W. “Hank” Hartsfield, USAF (35)
  • Major Robert F. Overmyer, US Marine Corps (33)
  • Major Donald H. Peterson, USAF (35)
  • Commander Richard H. Truly, US Navy (32)

In addition to the seven selected as astronauts, an eighth MOL pilot, Lt. Colonel Albert H. Crews, USAF, was assigned to MSC’s Flight Crew Operations Directorate. Prior to his MOL training, Crews was a pilot for the X-20 Dyna-Soar Program, an early USAF experimental lifting body vehicle cancelled in 1963.



Left: Official NASA photograph of the Group 7 astronauts (left to right) Bobko, Fullerton, Hartsfield,
Crippen, Peterson, Truly, and Overmyer who transferred from the MOL program. Right: Official portrait of Crews.
Credits: USAF.

The MOL Program had envisioned a series of 60-foot-long space stations in low polar Earth orbit, occupied by 2-man crews for 30 days at a time, launching and returning to Earth aboard modified Gemini-B capsules. Externally similar to NASA’s Gemini spacecraft, the MOL version’s major modification was a hatch cut into the heat shield that allowed the astronauts to access the laboratory that was located behind the spacecraft without the need for a spacewalk. While MOL astronauts would carry out a variety of experiments, the primary payload intended to fly in the laboratory was a telescope with imaging systems for military reconnaissance. The imaging system was codenamed Dorian and carried the Keyhole KH-10 designation. Its primary mirror was 72 inches in diameter, designed to provide high resolution images of targets of military interest. To reach their polar orbits, MOLs would launch from Vandenberg Air Force Base (AFB) in California atop Titan-IIIM rockets. Construction of Space Launch Complex-6 (SLC-6) there had begun to accommodate that launch vehicle but was suspended when the program was cancelled. The pad was later reconfigured to launch Space Shuttles on planned polar orbit missions.



Left: Patch of the MOL Program. Right: Illustration of the MOL as it would have appeared in orbit.
Credits: National Reconnaissance Organization.

Read Bobko’s, Crews’, Crippen’s, Fullerton’s, Hartsfield’s, Peterson’s, and Truly’s recollections of the MOL program and their subsequent NASA careers in their oral history interviews with the JSC History Office.

John Uri
NASA Johnson Space Center
https://www.nasa.gov/feature/50-years-ago-nasa-group-7-astronaut-selection
« Ostatnia zmiana: Sierpień 15, 2019, 13:39 wysłana przez mss »
Intel Core i5-2320 3GHz/8GB RAM/AMD Radeon HD 7700 Series/HD 1 TB/Sony DVD ROM...

Offline mss

  • Weteran
  • *****
  • Wiadomości: 4900
  • Space is not only about science, it is a vision,
    • Astronauci i ich loty...
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #339 dnia: Październik 03, 2019, 22:03 »
Oct. 3, 2019
35 Years Ago: STS-41G – A Flight of Many Firsts


The 13th flight of the Space Shuttle program, STS-41G was notable for many firsts and records. It was the first mission focused almost entirely on studying the Earth through the use of a satellite, multiple instruments and cameras, as well as crew observations to accomplish these goals. The crew of STS-41G also set several firsts. The Commander, Robert L. Crippen, became the first astronaut to make a fourth flight aboard the Space Shuttle. He did so only 5½ months after returning from his previous mission, STS-41C, becoming the first American to make two trips into space in one calendar year and the first to fly back-to-back missions on the same orbiter. The Pilot, Jon A. McBride, was making his first flight into space. The three Mission Specialists were Kathryn D. Sullivan, Sally K. Ride, and David C. Leestma. This marked the first time that two women flew in space at the same time, with Ride becoming the first American woman to fly a second mission and Sullivan the first American woman to conduct an Extravehicular Activity (EVA), or spacewalk. Leestma was the first of the astronaut class of 1980 to make a space flight. The two Payload Specialists, Marc Garneau, the first Canadian in space, and Paul D. Scully-Power, a civilian employee of the US Naval Research Laboratory and the first oceanographer and the first Australian-born American citizen to fly in space, rounded out the seven-member crew, the largest crew flown to that time.


Left: STS-41G crew patch. Right: STS-41G crew photo (front, left to right): McBride,
Ride, Sullivan, and Leestma; (back, left to right) Scully-Power, Crippen, and Garneau.


The Earth Radiation Budget Satellite (ERBS), managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, contained three instruments to measure solar and thermal radiation of the Earth in an effort to better understand global changes in climate. NASA’s Office of Space and Terrestrial Applications sponsored a cargo bay-mounted payload (OSTA-3) consisting of four instruments. Managed by the Jet Propulsion Laboratory in Pasadena, California, the Shuttle Imaging Radar-B (SIR-B), an updated version of SIR-A flown on STS-2, used synthetic aperture radar to support investigations in diverse disciplines such as archaeology, geology, cartography, oceanography, and vegetation studies. Making its first flight into space, the 900-pound Large Format Camera (LFC) took images of selected Earth targets on 9-by-18-inch film with 70-foot resolution. The Measurement of Air Pollution from Satellites (MAPS) experiment provided information about industrial pollutants in the atmosphere. The Feature Identification and Location Experiment (FILE) contained two television cameras to improve the efficiency of future remote sensing equipment. In an orbit inclined 57 degrees to the Equator, the instruments aboard the Space Shuttle Challenger could observe more than 75% of the Earth’s surface.

The Orbital Refueling System (ORS), managed by the Johnson Space Center in Houston, was not directly an Earth observation payload, but it was designed to assess the feasibility of conducting an on-orbit refueling of the Landsat-4 remote sensing satellite, then planned to take place in 1987, as well as Department of Defense satellites that were not designed for on-orbit refueling. In the demonstration, the astronauts remotely controlled the transfer of hydrazine, a highly toxic fuel, between two tanks mounted in the payload bay. During a spacewalk, two crewmembers simulated connecting the refueling system to a satellite and later tested the connection with another remotely controlled fuel transfer. Rounding out the payload activities, the large format IMAX camera made its third trip into space, with footage used to produce the film The Dream is Alive.


Left and middle: Two views of the launch of Challenger on the STS-41G mission.
Right: ERBS just before the RMS released it.


Space Shuttle Challenger roared off Launch Pad 39A 15 minutes before sunrise on Oct. 5, 1984, to begin the STS-41G mission. The launch took place just 30 days after the landing of the previous mission, STS-41D. That record-breaking turnaround time between Shuttle flights didn’t last long, as it was broken just 26 days after Challenger’s landing with the launch of Discovery on STS-51A. Eight and a half minutes after liftoff, Challenger and its seven-member crew were in space and shortly thereafter settled into a 218-mile high orbit, ideal for the deployment of the 5,087-pound ERBS. The crew noted that a 40-inch strip of Flexible Reusable Surface Insulation (FRSI) was missing from the right hand Orbiter Maneuvering System (OMS) pod, presumably lost during launch. Mission Control determined that this would not have any impact during reentry.

Ride grappled the ERBS with the Shuttle’s Canadian-built Remote Manipulator System (RMS) or robot arm but when she commanded the satellite to deploy its solar arrays, nothing happened. Mission Control surmised that the hinges on the arrays had frozen, and after Ride oriented the satellite into direct sunlight and shook it slightly on the end of the arm, the panels deployed. She released ERBS about two and a half hours late and McBride fired Challenger’s steering jets to pull away from the satellite. Its onboard thrusters boosted ERBS into its operational 380-mile high orbit. With an expected two-year lifetime, it actually operated until October 14, 2005, returning data about how the Earth’s atmosphere absorbs and re-radiates the Sun’s energy, contributing significant information about global climate change.


Left: The SIR-B panel being opened in Challenger’s payload bay.
Right: McBride with the IMAX camera in the middeck.


Near the end of their first day in space, the astronauts opened the panels of the SIR-B antenna and activated it, also deploying the Ku-band antenna that Challenger used to communicate with the Tracking and Data Relay System (TDRS) satellite. The SIR-B required a working Ku-band antenna to downlink the large volume of data it collected, although it could store a limited amount on onboard tape recorders. But after about two minutes, the data stream to the ground stopped. One of the two motors that steered the Ku antenna failed and it could no longer point to the TDRS satellite. Mission Control devised a workaround to fix the Ku antenna in one position and steer the orbiter to point it to the TDRS satellite and downlink the stored data to the ground. Challenger carried sufficient fuel for all the maneuvering, but the extra time for the attitude changes resulted in achieving only about 40% of the planned data takes. Among the SIR-B discoveries was the 3,000-year old lost city of Udar in the desert of Oman.


Left: Patch for Garneau’s mission. Right: Spiral eddies in the eastern Mediterranean Sea.

During the second mission day, the astronauts lowered Challenger’s orbit to an intermediate altitude of 151 miles. Flight rules required that the SIR-B antenna be stowed for such maneuvers but the latches to clamp the antenna closed failed to activate. Ride used the RMS to nudge the antenna panel closed. From the orbiter’s flight deck, Leestma successfully completed the first ORS remote-controlled hydrazine fuel transfer. Garneau began working on his ten CANEX investigations related to medical, atmospheric, climatic, materials and robotic sciences while Scully-Power initiated his oceanographic observations. Despite greater than expected global cloud cover, he successfully photographed spiral eddies in the world’s oceans, particularly notable in the eastern Mediterranean Sea.


Left: Sullivan (left) and Ride on Challenger’s flight deck. Right: Garneau and Scully-Power
working on a Canadian experiment in Challenger’s middeck.


The third day saw the crew lower Challenger’s orbit to 140 miles, the optimal altitude for SIR-B and the other Earth observing instruments. For the next few days, all the experiments continued recording their data, including Garneau’s CANEX and Scully-Power’s oceanography studies. Leestma completed several scheduled ORS fuel transfers prior to the spacewalk.  Preparations for that activity began on flight day 6 with the crew lowering the cabin pressure inside Challenger from the normal sea level 14.7 pounds per square inch (psi) to 10.2 psi. This was done to prevent the buildup of nitrogen bubbles in the bloodstreams of the two EVA crewmembers, Leestma and Sullivan, that could result in the development of the bends. The two verified the readiness of their spacesuits.


Left: Leestma (at left, with red stripes on his suit) and Sullivan during their EVA.
Right: Traditional inflight photo of the STS-41G crew (front, left to right) McBride, Ride, Sullivan, and
Leestma, (back, left to right) Scully-Power, Crippen, and Garneau.


On flight day 7, Leestma and Sullivan, assisted by McBride, donned their spacesuits and began their EVA. After gathering their tools, the two translated down to the rear of the cargo bay where the ORS was positioned. With Sullivan documenting and assisting with the activity, Leestma installed the valve assembly into the simulated Landsat propulsion plumbing. Having completed the ORS objectives, Leestma and Sullivan proceeded back toward the airlock, stopping first at the Ku antenna where Sullivan secured it in place. They returned inside after an EVA that lasted 3 hours and 29 minutes. After the conclusion of the EVA, the crew brought Challenger’s cabin pressure back up to 14.7 psi.


Left: Space Shuttle Challenger landing at KSC at the end of the STS-41G mission.
Right: The crew of STS-41G descends from Challenger after completing a highly successful mission.


During their final full day in space, Challenger’s crew tidied the cabin for reentry and completed the final SIR-B and other Earth observations. On Oct. 13, the astronauts closed the payload bay doors and fired the OMS engines over Australia to begin the descent back to Earth. Because of the mission’s 57-degree inclination, the reentry path took Challenger and its crew over the eastern United States, another Shuttle first. Crippen guided the orbiter to a smooth landing at KSC, completing a flight of 8 days, 5 hours, and 24 minutes. The crew had traveled nearly 3.3 million miles and completed 133 orbits around the Earth.


Left: Missing insulation from Challenger’s right hand OMS pod as seen after landing. Middle: Missing tile from Challenger’s left wing.
Right: Damage to tiles on Challenger’s left wing.


As noted above, on the mission’s first day in space the crew described a missing strip of FRSI from the right hand OMS pod. Additional damage to Challenger’s Thermal Protection System (TPS) was discovered after the landing. Several tiles on the underside the vehicle’s left wing were damaged and one tile was missing entirely, presumably lost during the reentry phase. Engineers found the culprit for the missing tile to be the water proofing that was used throughout the TPS that allowed debonding of the tiles. To correct the problem, workers removed and replaced over 4,000 tiles, adding a new water proofing agent to preclude the recurrence of the problem on future missions.

Read recollections of the STS-41G mission by Crippen, McBride, Sullivan, Ride, and Leestma in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41G mission.

John Uri
NASA Johnson Space Center

https://www.nasa.gov/feature/35-years-ago-sts-41g-a-flight-of-many-firsts
Intel Core i5-2320 3GHz/8GB RAM/AMD Radeon HD 7700 Series/HD 1 TB/Sony DVD ROM...

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #340 dnia: Październik 07, 2019, 00:22 »
Warto przypomnieć, że pilot tej wyprawy był w Polsce (Wrocław) w 2003.
https://www.forum.kosmonauta.net/index.php?topic=1573.msg87090#msg87090
Udało mi się zdobyć autograf :)


https://twitter.com/AstroMcBride/status/1085526881401823233

Jeden z uczestników lotu ma taką samą datę urodzenia jak Wiktor Niedzicki mający wczoraj wykład na WORLD SPACE WEEK WROCŁAW 2019 https://www.forum.kosmonauta.net/index.php?topic=3307.msg136781#msg136781

Artykuły astronautyczne
« Ostatnia zmiana: Październik 07, 2019, 00:26 wysłana przez Orionid »

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #341 dnia: Październik 07, 2019, 00:42 »
I wchodzimy w kolejny rok zaśmiecania kosmosu przez człowieka  ;)

60 years of space junk: The challenge of orbital debris
BY ALEXANDER WILLIAM SALTER 10/04/19

(...) Scientists have called attention to the space debris problem for decades. Now time is of the essence to get the problem under control. With the United States taking concrete steps toward establishing a U.S. Space Force, and with deep-pocketed entrepreneurs collaborating on making space tourism and space hotels a reality, we need bold leadership and revolutionary ideas to address the debris problem. (...)
https://thehill.com/opinion/energy-environment/463887-60-years-of-space-junk-the-challenge-of-orbital-debris

62 Years Ago Today, Sputnik-1 ‘Separated the Old From the New’
Helen Borodina Oct 4, 19

(...) Introducing the first sound from space, NBC radio said: ‘Listen now for the sound that forever separates the old from the new.’ (...)
https://asgardia.space/en/news/62-Years-Ago-Today-Sputnik-1-Separated-the-Old-From-the-New

Offline mss

  • Weteran
  • *****
  • Wiadomości: 4900
  • Space is not only about science, it is a vision,
    • Astronauci i ich loty...
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #342 dnia: Październik 17, 2019, 21:37 »
Oct. 17, 2019

30 Years Ago: Galileo off to Orbit Jupiter


The Galileo mission, named in honor of Italian astronomer Galileo Galilei who in 1610 discovered the four large moons orbiting Jupiter, received Congressional approval for flight in 1977, targeting a Space Shuttle launch in late 1981. By that time, Pioneer 10 and 11 had completed the first exploratory flybys of Jupiter and the more sophisticated Voyager 1 and 2 had just set out for their respective flybys. The new project, first known as Jupiter Orbiter/Probe (JOP), intended to place a sophisticated spacecraft into orbit around the largest planet in the solar system for in-depth observations over two years. In addition, prior to orbital insertion, the spacecraft would release a probe to make in-situ observations during its plunge through Jupiter’s upper atmosphere, relaying the data to Earth via the orbiter, before succumbing to extreme environmental conditions. The Jet Propulsion Laboratory in Pasadena, California, managed the development and operations of the mission, with NASA’s Ames Research Center in California’s Silicon Valley having prime responsibility for the probe, basing its design on the Pioneer Venus Large Probe.


Left: Illustration of Galileo in orbit around Jupiter. Right: Illustration by Ken Hodges of Galileo’s
entry probe during its descent through Jupiter’s upper atmosphere.

Delays in the Shuttle Program led to incremental slips of the launch first to 1984 and then to 1986. The upper stage to send it from Earth orbit toward Jupiter changed from the Inertial Upper Stage (IUS) to the high-energy liquid-hydrogen fueled Centaur, back to the less powerful IUS, and then back to the Centaur. In preparation for launch in May 1986, JPL delivered Galileo to the Kennedy Space Center (KSC) in December 1985. The January 1986 Challenger accident put all Shuttle flights on hold, and a thorough safety review led NASA to cancel the Shuttle Centaur combination in June 1986. Workers shipped Galileo back to JPL and NASA managers reprogrammed Galileo for launch using the IUS on a Shuttle flight in 1989. Using the less-powerful IUS meant Galileo would need three gravity-assist maneuvers, one at Venus and two at Earth, to achieve the velocity required to reach Jupiter, the so-called VEEGA (Venus-Earth-Earth Gravity Assist) trajectory. This increased travel time from two to six years, and since it was traveling closer to the Sun than previously anticipated, engineers installed additional thermal shielding on the spacecraft. Workers shipped Galileo back to KSC in April 1989 for final integration with the IUS and installation into the Shuttle’s payload bay.


Left: Launch of STS-34 carrying Galileo to space. Middle: The crew of STS-34 (front, left to right) Lucid, Chang-Díaz, and Baker, (back, left to right) Williams and McCulley. Right: Crew of Space Shuttle Atlantis deploying Galileo attached to its Inertial Upper Stage to begin its lengthy journey to Jupiter.

The much delayed Galileo finally made it into space on Oct. 18, 1989, aboard the Space Shuttle Atlantis during the STS-34 mission. Later that day, the crew of Donald E. Williams, Michael J. McCulley, Shannon M. Lucid, Franklin R. Chang-Díaz, and Ellen S. Baker deployed the 5,246-pound spacecraft attached to its IUS. One hour after deployment, the IUS ignited to send Galileo on its six-year journey to Jupiter, with the spacecraft flying free of the rocket stage 47 minutes later. The Galileo orbiter carried 10 science instruments weighing 260 pounds, including a camera system designed to return images of Jupiter’s satellites at 20 to 1,000 times better resolution than Voyager’s best, partly due to closer fly-by distances. The 747-pound probe carried seven instruments for measuring various parameters of the Jovian atmosphere during its rapid plunge. Seventeen principal investigators representing six countries led a team of more than 100 scientists involved with Galileo.


Left: Trajectory of Galileo to reach Jupiter, and key events during the planetary orbital phase.
Right: Galileo and its scientific instruments.

Galileo’s first planetary encounter occurred on Feb. 10, 1990, when it flew by Venus at a distance of 10,000 miles. In addition to picking up speed to send it on to its next encounter, Galileo tested out several of its science instruments including the imaging system, taking the first photographs of mid-level clouds and confirming the existence of lightning on the planet. On Dec. 8, 1990, during its 600-mile flyby of Earth, Galileo’s instruments detected chemical signatures in atmospheric trace elements associated with life form activity. The spacecraft also conducted observations of the Moon. A major anomaly occurred on April 11, 1991, when Galileo’s 16-foot diameter high-gain antenna failed to deploy fully. It is believed that the multiple prelaunch ground transports of the spacecraft, the vibration during launch and extended time exposed to vacuum conditions affected the lubrication of several of the antenna’s structural ribs, causing them to stick once in space. For the rest of the mission, a low-gain antenna was used for communication, augmented by ingenious software strategies including data compression, to maintain as much of the planned data transmission and salvage most of the science.


Left: Galileo image taken of Venus during the 1990 flyby. Middle: Galileo image of Earth taken
during the 1990 flyby. Right: Galileo image of the Earth and Moon taken during the 1992 flyby.

Galileo made the first close-up observations of an asteroid during a flyby of 12-mile long 951 Gaspra. Flying within 997 miles of the asteroid on Oct. 29, 1991, Galileo returned much science data and 150 photographs. A second flyby of the Earth took place on Dec. 8, 1992, with Galileo coming within 188 miles of its home planet. The spacecraft now had the required velocity to head toward Jupiter. Along the way, Galileo explored its second asteroid, flying within 1,500 miles of 35-mile long 243 on Aug. 28, 1993. The spacecraft made the surprising discovery that Ida had a tiny companion, the 1-mile wide satellite Dactyl orbiting about 90 miles away, the first known moon orbiting around an asteroid.


Left: Galileo image of the asteroid Gaspra. Right: Galileo image of the asteroid Ida (at left)
and its tiny satellite Dactyl.

The discovery of Comet Shoemaker-Levy 9 in March 1993 provided an exciting new opportunity for Galileo's science teams as well as the rest of Earth's astronomers. Jupiter’s massive gravitational field had captured the comet into a roughly 2-year orbit around the giant planet 20 to 30 years earlier. During a close encounter with Jupiter in July 1992, tidal forces had fragmented the comet into at least 21 pieces, some as large as 1.2 miles across. Astronomers calculated that the cometary fragments would impact Jupiter in July 1994, enabling the first direct observations of an extraterrestrial collision. Indeed, between July 16 and 22, the cometary fragments collided with Jupiter, although the impacts occurred on the planet’s side facing away from Earth. With Jupiter’s rapid rotation, the impact sites quickly rotated into view, appearing as dark spots against Jupiter’s colorful atmosphere. Galileo’s unique position in solar orbit, still 148 million miles away from Jupiter, provided it with an excellent vantage point to observe the collision directly and it returned several images of the impacts.


Four images taken by Galileo several seconds apart showing the impact of one of Comet
Shoemaker-Levy 9’s fragments on Jupiter’s night side.

About one year later, on July 13, 1995, Galileo deployed its atmospheric probe, still 150 days and 50 million miles from its encounter with Jupiter. On Dec. 7, the probe made first contact with Jupiter’s upper atmosphere at a speed of 106,000 mph, resulting in a deceleration of more than 200 times the force of gravity and temperatures on the heat shield reaching 16,000 degrees, as hot as the Sun’s surface. The probe returned excellent science data via the orbiter for 58 minutes during a descent of 97 miles. It found that the relative abundance of atmospheric components at Jupiter’s upper atmosphere are different from those in the Sun, indicating Jupiter’s unique planetary evolution since the formation of the solar system. When pressure on the probe reached 23 atmospheres and temperatures topped 300 oF, it ceased its transmissions and it was eventually vaporized in the deeper layers of the Jovian atmosphere.


Left: Cutaway view of the Galileo probe. Right: Entry profile of the Galileo probe.

The orbiter fired its main engine on Dec. 7, 1995, becoming the first artificial satellite of Jupiter with an initial orbital period of 198 days. Galileo soon began its nominal two-year science mission during which it completed 11 orbits around Jupiter. Mission planners designed these trajectories to optimize studies of Jupiter’s magnetosphere and to enable encounters with Jupiter’s largest moons Callisto, Europa, and Ganymede. Galileo also studied Jupiter’s ring system, composed largely of dust derived from impacts with the planet’s four small inner moons Thebe, Amalthea, Adrastea, and Metis, as well as the Great Red Spot and other atmospheric phenomena. On Dec. 7, 1997, NASA managers approved the two-year Galileo Europa Mission (GEM) extension that included eight consecutive encounters with Europa to study that moon’s frozen surface in great detail. As part of the GEM, Galileo also observed Io during two close encounters and Callisto during four flybys. The Galileo Millennium Mission extension added first one more year of observations then continued until the mission’s conclusion, and included more flybys of Ganymede and Io and joint observations with the Cassini spacecraft as it completed a flyby of Jupiter in December 2000 as a gravity-assist maneuver on its way to Saturn. Galileo completed its final encounter when in November 2002 it flew by the small inner moon Amalthea, providing important information about the satellite’s density. In addition to that final encounter, Galileo had completed seven flybys of Io, eight each of Callisto and Ganymede, and 11 of Europa.



Galileo images of Jupiter’s four largest moons (left to right) Callisto, Europa, Ganymede, and Io – the satellites are not to scale.


Left: Galileo full-planet image of Jupiter. Right: False-color infrared image of Jupiter’s Great Red Spot.


Composite image of Jupiter’s ring system taken in November 1996 from 1.4 million miles
when Galileo was in the planet’s shadow.


Left: Composite of Galileo images of Jupiter’s four smaller inner moons (left to right) Thebe,
Amalthea, Adrastea, and Metis, compared with Long Island, New York. Right: Another Galileo
image of Amalthea showing its reddish color.

Owing to its three mission extensions, Galileo endured more than four times the cumulative dose of radiation for which it was designed. Mission managers deactivated the spacecraft’s cameras on Jan. 17, 2002, after they had sustained irreparable damage from Jupiter’s strong radiation environment. Beginning in March 2003, ground controllers contacted Galileo once a week to verify its status.

To prevent Galileo from crashing onto one of Jupiter’s satellites that could potentially harbor life and contaminating it with terrestrial organisms, mission managers decided to send the spacecraft into a destructive dive into Jupiter’s atmosphere. On Sept. 21, 2003, after 14 years in space, traveling 2.8 billion miles, and 8 years in orbit around Jupiter, having completed 35 orbits around the giant planet, Galileo fired its main engine for the final time. Galileo flew into Jupiter’s atmosphere just south of the equator at a velocity of 108,000 miles per hour, several of its instruments sending science data back to Earth until the very last moment. "It has been a fabulous mission for planetary science, and it is hard to see it come to an end," Claudia Alexander, Galileo project manager at JPL, said of the spacecraft’s demise.

Some of the more significant findings not already mentioned above, Galileo fully mapped the global dynamics of Jupiter’s magnetosphere and made the first observations of ammonia clouds in the planet’s atmosphere. The previously discovered volcanic activity on Io may be 100 times more active than on Earth, and Io’s atmosphere, largely generated by that activity, may interact with Jupiter’s atmosphere. Galileo found evidence that Ganymede has a significant magnetic field, to date the only planetary satellite known to have one. The spacecraft discovered that Ganymede, Callisto, and Europa may all have a liquid saltwater subsurface layer and all three may have a tenuous atmosphere. Galileo found evidence supporting a theory that liquid oceans exist under Europa’s icy surface. “Galileo taught us so much about Jupiter but there is still much to be learned and for that we look with promise to future missions," said JPL Director Charles Elachi.


Left: Illustration of the Juno spacecraft firing it main engine. Right: Image of Jupiter taken by Juno.

The next spacecraft to explore Jupiter, the JPL-managed Juno, arrived in polar orbit around the giant planet on July 4, 2016, and continues to return stunning images and scientific data. The European Space Agency plans to launch the JUICE (JUpiter ICy moons Explorer) in 2022 to arrive at Jupiter in 2029, make several flyby of several of the large moons, and finally enter orbit around Ganymede in 2032 for an in-depth study of that satellite. Under development at NASA, the Europa Clipper will launch in 2025 with arrival at Jupiter between 2026 and 2031, depending on the launch vehicle chosen. Once in orbit around Jupiter, Europa Clipper will make up to 45 flybys of its namesake satellite at altitudes as low as 16 miles to complete a comprehensive study. The two missions, JUICE and Europa Clipper, will conduct complementary investigations to greatly increase our knowledge of Jupiter and its satellites.

For more on the Galileo mission visit https://solarsystem.nasa.gov/missions/galileo/overview/

John Uri
NASA Johnson Space Center
Intel Core i5-2320 3GHz/8GB RAM/AMD Radeon HD 7700 Series/HD 1 TB/Sony DVD ROM...

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #343 dnia: Październik 18, 2019, 23:57 »
Link do powyższego artykułu: https://www.nasa.gov/feature/30-years-ago-galileo-off-to-orbit-jupiter

<a href="http://www.youtube.com/watch?v=xuwjLeILWlA" target="_blank">http://www.youtube.com/watch?v=xuwjLeILWlA</a>

Link do materiału: https://www.youtube.com/watch?v=xuwjLeILWlA

Artykuły astronautyczne

Offline Orionid

  • Weteran
  • *****
  • Wiadomości: 10683
  • Very easy - Harrison Schmitt
Odp: Kalendarium historycznych wydarzeń
« Odpowiedź #344 dnia: Październik 19, 2019, 00:03 »
W tym roku minęło 30 lat od rozpoczęcia misji Magellan oraz 25 lat od jej zakończenia.

<a href="http://www.youtube.com/watch?v=dzb9cUtLA08" target="_blank">http://www.youtube.com/watch?v=dzb9cUtLA08</a>

Link do materiału: https://www.youtube.com/watch?v=dzb9cUtLA08

30 Years Ago: Magellan off to Map Venus
May 6, 2019

Venus has often been called Earth’s sister planet, mainly because the two are roughly the same size. And there the similarity ends.  One significant difference is that Venus is covered by an opaque cloud layer that does not allow direct visualization of its surface. For this reason, early probes making flybys of Venus didn’t even carry cameras. In 1961, using Earth-based radar scientists were for the first time able to peer through the clouds and obtain very low resolution “images” of the surface of Venus. By the mid-1970s technology had improved so that Earth-based radars could provide surface resolution down to about 10 kilometers, but only of limited areas of the planet. The next step was to place a small radar instrument into orbit around Venus – what it lacked in size it more than made up for in proximity to the surface.

The first spacecraft to study Venus using radar was Pioneer Venus Orbiter, managed by the NASA Ames Research Center in California’s Silicon Valley, which entered a polar orbit around the planet in December 1978. Over the next 14 years, among other observations it mapped approximately 90% of Venus at a resolution of about 10 kilometers. Pioneer Venus found the planet to be almost perfectly spherical, unlike Earth which has a measurable bulge at the equator. Also, more than half of Venus’ surface is within 500 meters of the mean surface height. The radar imagery found two large continents, Ishtar Terra roughly the size of the United States and Aphrodite Terra about the size of Africa, as well as large-scale tectonic features such as rift valleys and volcanic calderas.


Map of Venus based on radar imagery from the Pioneer Venus Orbiter spacecraft.

As good as the results returned by Pioneer Venus Orbiter were, scientists yearned for higher resolution radar imagery. The Soviet Union obliged by launching two spacecraft carrying Synthetic Aperture Radar (SAR) instruments with large antennas. Venera 15 and 16 entered polar orbits around Venus in October 1983 and during their eight-month missions mapped about a quarter of the planet’s surface to a resolution of 1 to 2 kilometers. During this time, NASA was planning its own mission called the Venus Radar Mapper, later renamed Magellan, with the capability to map the planet down to a resolution of 120 meters using SAR. Magellan’s prelaunch goal was to map up to 70% of the planet during one 243-day imaging period, equivalent to one Venusian “day.” The Jet Propulsion Laboratory in Pasadena, California, managed the mission.


Launch of STS-30 carrying Magellan to space.


The crew of STS-30 (left to right) Grabe, Walker, Thagard, Cleave, and Lee.


Crew of Space Shuttle Atlantis deploying Magellan attached to its Inertial Upper Stage to begin its journey to Venus.
The large dish antenna at the top of the spacecraft was used for the radar mapping of the planet.


Magellan became the first planetary probe to be launched by the Space Shuttle when it blasted off from the Kennedy Space Center inside Atlantis’ cargo bay on May 4, 1989, during the STS-30 mission. The crew of David M. Walker, Ronald J. Grabe, Mark C. Lee, Norman E. Thagard, and Mary L. Cleave deployed the 7,604-pound Magellan and its Inertial Upper Stage (IUS) the next day. One hour later, the IUS ignited to send Magellan on its 15-month journey to Venus. After several mid-course corrections, Magellan settled into a near-polar orbit around Venus on Aug. 10, 1990.


Trajectory of Magellan to explore Venus.


Colorized animated globe of Venus based on Magellan radar imagery

On Sep. 15, Magellan began returning high-resolution radar images of Venus’ surface, showing evidence of volcanism, tectonic movement, lava channels and pancake-shaped domes. During the 243-day mapping cycle that ended May 15, 1991, Magellan mapped 83.7% of the planet’s surface with unprecedented resolution, exceeding its pre-mission objective. The spacecraft remained healthy and NASA extended its mission to conduct an additional five 243-day imaging cycles, which in aggregate increased the area of the planet mapped to 98%. In addition to radar imaging, Magellan also made precise measurements of Venus’ gravity field and used the planet’s atmosphere to circularize its orbit in the first test of the aerobraking technique. During its final cycle, Magellan studied Venus’ upper atmosphere. On Oct. 13, 1994, after a series of controlled engine firings lowered its orbit, Magellan entered Venus’ atmosphere and burned up, having completed its highly successful mission during more than 15,000 orbits of the cloud-shrouded planet.


Colorized Magellan radar image of Alpha Regio.


Three impact craters in Lavinia Planitia.


Three impact craters in Lavinia Planitia.

Magellan’s high-resolution radar global map of Venus, comparable in resolution to visible light imagery-based maps of other bodies in the solar system, provided scientists with a deeper understanding of Venusian geology and the role of meteorite impacts, volcanic activity, and tectonics in the formation of surface features. Volcanic features are very common on Venus, making up the majority of surface formations including vast lava plains, lava domes, and large shield volcanoes. Evidence of meteorite impacts is limited, indicating that the surface of Venus is relatively young, on the order of 800 million years old. Typical signs of plate tectonics are not present on Venus, indicating little or no continental drift activity. The images revealed little evidence of erosion or wind effects despite the dense atmosphere, and this is likely due to the extreme dryness of the Venusian atmosphere.

For more on the Magellan mission visit https://www2.jpl.nasa.gov/magellan/

Watch a video about the Magellan mission at https://www.youtube.com/watch?v=fWbKRuKZ6MM

John Uri
NASA Johnson Space Center
https://www.nasa.gov/feature/30-years-ago-magellan-off-to-map-venus

Artykuły astronautyczne