« Odpowiedź #45 dnia: Listopad 13, 2022, 07:01 »
Rozmowa z specjalistką zespołu PerseveranceSophia Mitchell: So on the Perseverance team, I'm a systems engineer for the gas dust removal tool, it actually has a tank of nitrogen. And it uses two solenoid valves to pass that nitrogen into kind of a holding chamber. So we can be sure were puffing the exact same amount each time. And then it puffs on to the surface to clean off rocks, or to clean out an abrasion area or just investigate things. And so I started working on that tool as a systems engineer because of the experience that I had with working on the feet extended drilling problem. It's, again, thinking about how you have a robotic system interacting with the surface.
https://mobile.twitter.com/nasaartemis/status/1361329424289984512Gravity Assist: Driving on Mars, with rover driver Sophia Mitchell (1)
Feb 12, 2021
NASA's Curiosity Mars rover took this selfie at a location nicknamed "Mary Anning" after a 19th century English paleontologist. Curiosity landed on Mars on Aug. 6, 2012. Credits: NASA/JPL-Caltech/MSSSWhat does it take to drive a rover that’s more than 100 million miles away? Sophia Mitchell at NASA’s Jet Propulsion Laboratory has been driving the Mars Curiosity rover since 2018. In addition to her science and engineering background, Mitchell is also an avid hiker and pilot, and explains how she combines all of these interests and skills in her job. Curiosity landed on Mars on Aug. 6, 2012, and sends back images and other science data from Mount Sharp in Gale Crater. On Feb. 18, 2021, NASA’s Perseverance rover will land on Mars at Jezero Crater. Mitchell also explains how these craters are different and why she’s excited to have a second rover exploring the Red Planet.
Jim Green: What does it take to drive a rover on Mars? How easy or how hard is it? What do we need to know to do it right?
Jim Green: Hi, I'm Jim Green. And this is a new season of Gravity Assist. We're going to explore the inside workings of NASA in making these fabulous missions happen.
Jim Green: I’m here with Sophia Mitchell, a NASA engineer at the Jet Propulsion Laboratory. Sophia currently works on the flight operations team for the Mars Curiosity rover. And she’s been involved in the Perseverance rover, soon to land on Mars. So, Sophia, welcome to Gravity Assist.
Sophia Mitchell: Hi, thank you so much for having me.
Jim Green: Before we named the rover, Curiosity, the whole program was called the Mars Science Laboratory or MSL.
Jim Green: Well, how long have you been driving Curiosity?
Sophia Mitchell: So my first drive on Mars with Curiosity was in 2018. It was actually right around New Year's. And it was extremely exciting. But it was also very satisfying because learning to drive a rover is a very long process. And while driving, it wasn't the end of that learning process. I began learning how to drive the rover in 2017.
Jim Green: Well, what's the training like, I mean, it sounds like they really put you through some sort of wringer.
Sophia Mitchell: They do! So, one of the things about being a Mars rover driver is you have to really understand the system inside and out. And so I had to learn about how the differential and bogey, which is basically like the shock absorption system on the rover, works as it moves over different rocks. We actually went out into the Mars Yard, which is this Mars-simulated area that we have at JPL. It's like a giant sandbox with all kinds of different surfaces and slopes and sand and rocks.
Sophia Mitchell: And we drove the version of MSL that we have on Earth called Maggie around in the Mars Yard. And that allowed us as trainees to understand how the system reacts in different situations. So when we see a certain terrain on Mars, then we can imagine ourselves well, if I drive the rover’s wheels over that sloped smooth rock, is it gonna slip? Is it gonna be able to grip that? Will I, do I need to worry about it, you know, sliding down and catching itself later?
Jim Green: Well, that sounds fantastic. So what's it like then to plan the route? Do you always know where you're going? Or how detailed of set of information you need to do that?
Sophia Mitchell: Right. So, planning the route, I like to think of like hiking. I'm an avid backpacker. And so I like to take the images that we get down from the surface. And those images have range data in them, which allows us to create a 3-D surface of Mars from the viewpoint of the Curiosity rover.
Sophia Mitchell: And so we can take those images and put on 3-D glasses, which I have right here, and actually see what it would look like if we were standing where the rover is on Mars. And so, based on that information, I can then think, if I were hiking, where would I place my feet. And in this case, we're going to be placing the robotic wheels in order to get to where the science team would like us to go. Sometimes I jokingly will tell my friends, I work for Mars Uber, because it's the science team saying, ‘We want to go over here,’ and we have to figure out how to get there safely.
Sophia Mitchell: Once you have that idea of where you want to go, then you have to also remember that you need to keep the wheel safe and avoid obstacles that the rover either can't drive through such as deep sand or can't drive over, like large rocks, or particularly pointy rocks. One of the issues that we've been having with an older Mars rover is that the wheels as we've driven them over all these pointy and old and sharp terrains, is that the wheels are actually starting to get small holes in them and break down a little bit. And we're trying to put off the wheels breaking down as long as we possibly can. So, part of my job as a driver is to make sure that the rover will get to where we'd like it to go and also get there in one piece.
Jim Green: Well, this sounds really fascinating. What what's the initial set of information you use to be able to plan the route? Do you need some sort of neat images? And how do you acquire those?
Sophia Mitchell: We have a lot of different sets of images. We get some images from the Mars Reconnaissance Orbiter, and those are we call those orbital mesh. And it's three-dimensional images in color and grayscale of the area around the Mars rover. But because it's an orbiter, it can only zoom in so far. So for more detailed images of the specific rocks that we'll need to drive around, or the specific sand areas that we either want to avoid or maybe investigate, we then require imagery from the rover itself.
Sophia Mitchell: And so those images are taken as we drive. And before the end of each drive, we take a picture of where the rover will be parking. So before we begin the next planning day, we then get all those images down from space. And then as rover planners, the first thing we do is load up these meshes and make what's called a high-fidelity model, basically, a pretty precise version on our simulator of what the area of around the rover looks like and where the rover is.
Jim Green: Well, how far can you possibly go in one day? Is it typical that the scientists say I want to go here and the next day you're there?
Sophia Mitchell: Not typically, it depends. So we have a pretty long strategic route that the science team has worked with some other planners with to plot where on the orbital map we want to go long term. But I think the furthest drive that we've done is just over 100 meters. I actually was one of the rover planners who did that drive.
Sophia Mitchell: And so obviously, if the scientists are interested in something that's maybe a mile away, we're not going to get there in one go. So, yeah, we'll pick intermediate positions where maybe we know we'll have a good viewshed, if it's up on top of a little hill, maybe we'll know we can see really far. Or sometimes scientists will say we want to go way over there. But in this image, there's this cool rock here. And we want to go see that. So we go check out the cool rock first. So yeah, usually we go 50 to 100 meters at a time.
Jim Green: Does it take people day and night working this? Or do you do you only work during a Mars day?
Sophia Mitchell: So in the very beginning of Mars missions, you go on, go on what's called Mars time where you wake up when the Sun would be rising with that rover, and then you go to bed at the end of the solar day. And so you're basically getting the data as it's coming down real time and then working with the rover as it's going throughout its day. As the rover gets a little bit older, then you no longer need to be on Mars time. And so we have different passes for each of the satellites, that gives us data. And so, if with MSL, we can have a normal, you know, eight to five schedule, and just count on the data coming in during the night when we're sleeping here on Earth, and be able to plan that way.
Sophia Mitchell: But one question I get a lot is if we joystick the rover, which we really don't do, it's basically we're making sequences using a really specific programming language that we have for the Mars rovers. And we make a whole sequence for a day or sometimes up to three days, package that up, and then send it to Mars.
Jim Green: And of course, so Mars isn’t very close, you know, it's sometimes between 4 light-minutes, and 22 light-minutes away. So you can't, you can't really joystick any of that. Well, MAHLI is one of the cameras that you work with. But MAHLI is really famous for taking selfies. So how do you do that? Is that done with one picture?
Sophia Mitchell: No, it's not. And that's the reason why in our selfies, you don't see the robotic arm. Those selfies that we take are about 50 pictures that have been Photoshopped together to make the composite that is our selfie. And there's a really cool GIF that you can find where it shows we took a video of, well, a video, we took a picture every 15 seconds of the turret as it was taking our selfie. And you can see how MAHLI pivots around this specific point in space to get this image that looks like it was taken all at once.
Jim Green: Well, what is your real favorite part of being a rover driver?
Sophia Mitchell: Ooh, that's a tough question. It's a lot of fun. It's a really fun team to work with. And it's definitely a dream. I wanted to be an astronaut since I was really small. And so the feeling that I'm controlling something on a different planet in some way feels like you know my work is going to space so in some way maybe I am. I really enjoy the problem-solving that comes with having a rover that's aging on a different planet and having to understand how to solve those problems for a system that you can't ever touch.
Sophia Mitchell: So, for example, the reason I came onto MSL was I was working on the feed- extended drilling team. So back in 2016, the drill broke on the rover. And we had to basically relearn how to drill on Mars. And so not only did we have to figure out why it broke and how it broke, but also how do we drill? And how do we basically reinvent this really integral part of our sampling system? And those are just the kind of questions that I like to try to answer because it sounds crazy. And that's just, I think it sounds like so much fun.
Jim Green: I can understand how excited you can be to go to work each day. Well, how excited are you about the Perseverance landing?
Sophia Mitchell: I'm extremely excited. This is the first rover that I've worked on before it landed, so that's really exciting for me personally, but also just in terms of having another rover on Mars. I mean, we had Spirit and Opportunity. And then when we lost Opportunity, it's just been Curiosity until now. And so having a second rover going and, searching for those signs of life and continuing on with all the scientific discoveries that we can get from, from the surface of Mars, I think is really exciting.
Jim Green: Well, I know what I'm going to be doing when Perseverance lands, and that's going to be on the edge of my seat watching the NASA feed as we go through that. What will you be doing? Will you be on center at JPL?
Sophia Mitchell: Unfortunately, I won't, due to the pandemic, but I'll be home watching with lots of the other Mars 2020 Perseverance team and sharing on the rover and being just as excited as everybody else to see it safely touch down.
Jim Green: Well, how did you get involved in the Perseverance team?
Sophia Mitchell: So on the Perseverance team, I'm a systems engineer for the gas dust removal tool, it actually has a tank of nitrogen. And it uses two solenoid valves to pass that nitrogen into kind of a holding chamber. So we can be sure were puffing the exact same amount each time. And then it puffs on to the surface to clean off rocks, or to clean out an abrasion area or just investigate things. And so I started working on that tool as a systems engineer because of the experience that I had with working on the feet extended drilling problem. It's, again, thinking about how you have a robotic system interacting with the surface.
Jim Green: Oh, that sounds really exciting. Well, that means then you're part of the perhaps that early planning phase once Percy lands, and the mast goes up, and they do some checkouts. What are some of the first things that they're going to be doing within the first month of operation?
Sophia Mitchell: So we'll be doing all sorts of check outs for the instruments on the robotic arm, we have a corer. we have instruments such as PIXL, SHERLOC, there’s MOXIE, which is another instrument that'll be trying to produce oxygen on the surface. And so we have to just make sure that everything survives landing and survive cruise in a state that we were expecting. And so once we've gone through all those checkouts, and one of the really exciting things that'll happen early is, before we even drive, we'll be flying the Mars helicopter. And that is the first, that's going to be the first powered flight on a different planet ever. So that's just extremely exciting to me. I learned how to fly when I was little, I've always been obsessed with flying and I'm an aerospace engineer. So just having something go fly on a different planet, a little Mars helicopter, I'm just so excited about that.
« Ostatnia zmiana: Czerwiec 25, 2023, 09:50 wysłana przez Orionid »
Zapisane