Gravity Assist: Listening to the Universe, with Kim Arcand (2)
The Crab Nebula has been studied by people since it first appeared in Earth's sky in 1054 A.D. Modern telescopes have captured its enduring engine powered by a quickly spinning neutron star that formed when a massive star collapsed. The combination of rapid rotation and a strong magnetic field generates jets of matter and anti-matter flowing away from its poles, and winds outward from its equator. For the translation of these data into sound, which also pans left to right, each wavelength of light has been paired with a different family of instruments. X-rays from Chandra X-ray Observatory (blue and white) are brass, optical light data from Hubble Space Telescope (purple) are strings, and infrared data from Spitzer (pink) can be heard in the woodwinds. In each case, light received towards the top of the image is played as higher pitched notes and brighter light is played louder. Credits: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)Kim Arcand: So for this piece, we wanted to be able to hear those individual things, right. So the X-rays from Chandra are like, a harsh breath sound. And the optical light from the Hubble Space Telescope would be like the lighter strings, and the infrared data from Spitzer, which is the lowest energy material that is like soft woodwinds type of sound. So again, you have to think of it as sort of like a map. And so in this case, the, the light that we're seeing towards the top of the image is being played as higher pitch notes. And the brighter light overall is being played louder. So there's a lot going on.
Jim Green: Wow, I think that is my favorite at the moment. But let's do another one. Let's listen to your rendition of the center of our galaxy, the Milky Way. And then tell us how you put that together.The center of our Milky Way galaxy is too distant for us to visit in person, but we can still explore it. Telescopes gives us a chance to see what the Galactic Center looks like in different types of light. But what about experiencing these data in other senses like hearing? Sonification is the process that translates data into sound, and a new project brings the center of the Milky Way to listeners for the first time. The translation begins on the left side of the image and moves to the right, with the sounds representing the position and brightness of the sources. The light of objects located towards the top of the image are heard as higher pitches while the intensity of the light controls the volume. Credits: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)Kim Arcand: This one might be my favorite, though, it's really hard to pick, just because it was one of the first ones that we worked on.
Kim Arcand: But for the galactic center, this is a very classic image. It's of course, our home galaxy. We're looking at the inner about 400 lightyear region around the supermassive black hole Sagittarius A star at the very core of the Milky Way. And again, we have incredible bits of information from various NASA observatories, we've got the X-ray light from Chandra, of course, we also have the infrared light from Spitzer and additional information from the Hubble Space Telescope. And they look very different when you're looking at these different kinds of light.
Kim Arcand: And particularly as you approach the supermassive black hole, as you skew across the image from left to right, you'll hear there's this massive crescendo, and it's where all the sort of action is happening. So again, just sound-wise, what you're listening for, the infrared is going to be played as a soft piano, the optical or the mid-range will be played as a plucky violin. And then the highest energy X-rays will be this really high-noted xylophone sound.
Kim Arcand: And I should say, none of this would have been possible without the incredible diligence and talented work of the colleagues that I've been working with this for this entire project on and they're from System Sound. Matt Russo's an astrophysicist and musician and Andrew Santaguida is a sound engineer and it really is a major group effort. There's really no “me” in science, it's all “we,” so just, just wanted to bring them into the story because I feel like they've just been incredibly talented and how they approach this.
Jim Green: But you know, besides all your work in sonification, and data visualization, I know you've been very active in public outreach, especially trying to get our young people interested in astronomy. So can you give me a little insight as to what you've been doing in that area recently?
Kim Arcand: Yeah, it really is a complete joy to be able to do this type of work, I just love it. Like, I really, really love it. My sort of areas of expertise tend to be in things like helping other people to be able to experience the universe. So a lot of the work we've done at Chandra has been taking objects and modeling them into 3-D so that we can 3-D print them, bring them into virtual reality, or holograms, or augmented reality. And that project, I think, really sort of opened up my eyes as to just the many different ways that we can all experience the universe. For someone who is either blind or visually impaired, being able to access 3d printed model or the data sonification provides a really rich experience. And so with these types of projects, we work with people, either astrophysicists or amateur astronomers or other students, for example, who are blind or visually impaired in order to really improve the product and make it something that the community is going to be able to appreciate.
Jim Green: Yeah, sounds fantastic. Well, you know, Kim, I always like to ask my guests to tell me what that event, person place or thing that got them so excited about becoming the scientists they are today. And I call that event a gravity assist. So Kim, what was your gravity assist?
Kim Arcand: You know, I'm not sure if it was someone who helped me realize that science would be for me, or it's just somebody who helped me realize that there are different ways of experiencing things. I was a super, super shy kid, like, you know, hide behind my mom type of shy kid when I was little. And I didn't make friends easily. I was just so shy. And so when I went to kindergarten, I remember being like really anxious. And I had a hard time making friends. But my very first friends is this little girl. She was deaf, and she actually helped teach me sign language so I could communicate with her and she had an assistant teacher who also helped us.
Kim Arcand: And I think that experience never left me. I think I always just sort of realized from day one, like, how important is it is for other people to bring you into their worlds and vice versa. And so I think that's kind of. that was kind of like a first step for me. It took many, many years before ended up doing work at all related to those types of experiences. But I think it was just a key moment that stuck with me my whole life of being able to appreciate other people's perspectives. And the kindness that she offered me as someone who didn't friends easily was definitely something that I appreciate. And I wish I remember, like her name, and I could find her again, because I will actually love to say thank you to her. But yeah, I'll have to give her credit for “gravity assist.”
Jim Green: Well, I know being shy, you really have to work on being able to project and talk about your ideas and everything. And I think you've been doing a fantastic job, allowing us to listen to data in new and unique ways. So Kim, thanks so much for joining me and discussing this fascinating topic.
Kim Arcand: Thank you so much. This was really fun.
Jim Green: Well, join me next time as we continue our journey to look under the hood at NASA, and see how we do what we do. I'm Jim Green, and this is your Gravity Assist.Credits
Lead producer: Elizabeth Landau
Audio engineer: Manny Cooper
Video producers: Elizabeth Landau and Lacey Young
Last Updated: May 24, 2021
Editor: Gary Daines
Source:
https://www.nasa.gov/mediacast/gravity-assist-listening-to-the-universe-with-kim-arcand